You could use a scale to measure the mass as well as a cup to hold the water. If you were comparing the two, you should also probably use a graduated cylinder to get the same amount of each type of water.
Hope this helped ^_^
Answer:
= 67.79 g
Explanation:
The equation for the reaction is;
4Cr(s)+3O2(g)→2Cr2O3(s)
The mass of O2 is 21.4 g, therefore, we find the number of moles of O2;
moles O2 = 21.4 g / 32 g/mol
=0.669 moles
Using mole ratio, we get the moles of Cr2O3;
moles Cr2O3 = 0.669 x 2/3
=0.446 moles
but molar mass of Cr2O3 is 151.99 g/mol
Hence,
The mass Cr2O3 = 0.446 mol x 151.99 g/mol
<u> = 67.79 g
</u>
If you start with 0.30 m Mn₂ , at 12.5 pH, free Mn₂ concentration be equal to 4.6 x 10⁻¹¹ m
Initial molarity of Mn₂ = 0.30 M
Final molarity of Mn₂ = 4.6 x 10⁻¹¹
pH = ?
Ksp [Mn(OH)₂] = 4.6 x 10⁻¹⁴ (standard value)
Write the ionic equation
Mn(OH)₂ → Mn⁺² + 2OH⁻
[Mn⁺²] = 4.6 x 10⁻¹¹
We will calculate the concentration of OH⁻ by using Ksp expression
Ksp = [Mn⁺²][OH-]²
[Mn⁺²][OH⁻]² = 4.6 x 10⁻¹⁴
[OH⁻]² = 4.6 x 10⁻¹⁴ / 4.6 x 10⁻¹¹
[OH⁻]² = 10⁻³
[OH⁻] = (10⁻³)¹⁽²
[OH⁻] = 0.0316 M
Calculate the pOH
pOH = -log [OH⁻]
pOH = -log [0.0316]
pOH = 1.5
Now calculate pH
pH = 14 - pOH
pH = 14 - 1.5
pH = 12.5
You can also learn about molarity from the following question:
brainly.com/question/14782315
#SPJ4
Is there any choices or is this a fill in the blank question?