3.) An extreme value refers to a point on the graph that is possibly a maximum or minimum. At these points, the instantaneous rate of change (slope) of the graph is 0 because the line tangent to the point is horizontal. We can find the rate of change by taking the derivative of the function.
y' = 2ax + b
Now that we where the derivative, we can set it equal to 0.
2ax + b = 0
We also know that at the extreme value, x = -1/2. We can plug that in as well.

The 2 and one-half cancel each other out.


Now we know that a and b are the same number, and that ax^2 + bx + 10 = 0 at x = -1/2. So let's plug -1/2 in for x in the original function, and solve for a/b.
a(-0.5)^2 + a(-0.5) + 10 = 0
0.25a - 0.5a + 10 = 0
-0.25a = -10
a = 40
b = 40
To determine if the extrema is a minima or maxima, we need to go back to the derivative and plug in a/b.
80x + 40
Our critical number is x = -1/2. We need to plug a number that is less than -1/2 and a number that is greater than -1/2 into the derivative.
LESS THAN:
80(-1) + 40 = -40
GREATER THAN:
80(0) + 40 = 40
The rate of change of the graph changes from negative to positive at x = -1/2, therefore the extreme value is a minimum.
4.) If the quadratic function is symmetrical about x = 3, that means that the minimum or maximum must be at x = 3.
y' = 2ax + 1
2a(3) + 1 = 0
6a = -1
a = -1/6
So now plug the a value and x=3 into the original function to find the extreme value.
(-1/6)(3)^2 + 3 + 3 = 4.5
The extreme value is 4.5
Answer:
An average of 60mph.
Step-by-step explanation:
The average is the mean.
(50 + 70)/2 = 60
Please mark Brainliest if this helps!
Answer:
Volume = 18 cm^3
Surface Area = 58 cm^2
Step-by-step explanation:
Find the volume with the formula V=w*h*l
W= width
H = height
L = length
W= 2cm
H= 1 cm
L= 9 cm
V= w*h*l
V= 2cm * 1 cm * 9cm
V= 18 cm^3
Find the surface area with the formula A= 2(w*l + h*l + h* w)
W= width
H = height
L = length
W= 2cm
H= 1 cm
L= 9 cm
A= 2(w*l + h*l + h* w)
A= 2(2cm*9cm + 1cm*9cm + 1cm* 2cm)
A= 2(29cm)
A= 58cm^2
Here is the graph i’ve created to answer your question!