Answer:
8 m/s
Explanation:
All you have to do here is add 20 and 60 (giving you 80) and dividing by 10 seconds. 80/10= 8 m/s
I think it's A Tsunami. Or an Earthquake
Answer:
-7.89 * 10^(-9) C
Explanation:
Parameters given:
q1 = 2.42 nC = 2.42 * 10^(-9) C
Distance between q1 and q2 = 5.33 m
q3 = 1.0 nC = 1 * 10^(-9) C
Distance between q1 and q3 = 1.9 m
Distance between q2 and q3 = 5.33 - 1.9 = 3.43 m
The net force acting on q3 is:
F = F(q1, q3) + F(q2, q3)
F = (k*q1*q3)/1.9² + (k*q2*q3)/3.43²
F = (9 * 10^(9) * 2.42 * 10^(-9) * 1 * 10^(-9))/3.61 + (9 * 10^(9) * q2 * 1 * 10^(-9))/11.7649
F = 6.033 * 10^(-9) + 0.765*q2
If the net force is zero:
0 = 6.033 * 10^(-9) + 0.765*q2
-0.765*q2 = 6.033 * 10^(-9)
=> q2 = -[6.033 * 10^(-9)]/0.765
q2 = -7.89 * 10^(-9) C
Answer:
V = 20.5 m/s
Explanation:
Given,
The mass of the cart, m = 6 Kg
The initial speed of the cart, u = 4 m/s
The acceleration of the cart, a = 0.5 m/s²
The time interval of the cart, t = 30 s
The final velocity of the cart is given by the first equation of motion
v = u + at
= 4 + (0.5 x 30)
= 19 m/s
Hence the final velocity of cart at 30 seconds is, v = 19 m/s
The speed of the cart at the end of 3 seconds
V = 19 + (0.5 x 3)
= 20.5 m/s
Hence, the final velocity of the cart at the end of this 3.0 second interval is, V = 20.5 m/s
Answer:
The temperature is 2541.799 K
Explanation:
The formula for black body radiation is given by the relation;
Q = eσAT⁴
Where:
Q = Rate of heat transfer 56.6
σ = Stefan-Boltzman constant = 5.67 × 10⁻⁸ W/(m²·k⁴)
A = Surface area of the cube = 6×(3.72 mm)² = 8.3 × 10⁻⁵ m²
e = emissivity = 0.288
T = Temperature
Therefore, we have;
T⁴ = Q/(e×σ×A) = 56.6/(5.67 × 10⁻⁸ × 8.3 × 10⁻⁵ × 0.288) = 4.174 × 10¹⁴ K⁴
T = 2541.799 K
The temperature = 2541.799 K.