1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ladessa [460]
3 years ago
12

What is the outcome of the Training and Exercise Planning Workshop (TEPW)?

Physics
1 answer:
balandron [24]3 years ago
8 0

Answer / Explanation:

The result of the Training and Exercise Planning Workshop (TEPW) is to set the foundation for the strategy and pattern for a proposed exercise program. The TEPW purpose is to engage elected and selected officials in identifying exercise program priorities and planning a schedule of training and exercise events to meet those priorities.

An essential factor for the exercise management process is to create a collaborative environment where a whole community stakeholders can engage in a forum to discuss and coordinate training and exercise activities across local organizations to maximize the use of available resources and prevent duplication of effort.

You might be interested in
An electron is moving east in a uniform electric field of 1.55 N/C directed to the west. At point A, the velocity of the electro
valkas [14]

Answer:

Final velocity of electron, v=6.45\times 10^5\ m/s    

Explanation:

It is given that,

Electric field, E = 1.55 N/C

Initial velocity at point A, u=4.52\times 10^5\ m/s

We need to find the speed of the electron when it reaches point B which is a distance of 0.395 m east of point A. It can be calculated using third equation of motion as :

v^2=u^2+2as........(1)

a is the acceleration, a=\dfrac{F}{m}

We know that electric force, F = qE

a=\dfrac{qE}{m}

Use above equation in equation (1) as:

v^2=u^2+\dfrac{2qEs}{m}

v^2=(4.52\times 10^5\ m/s)^2+2\times \dfrac{1.6\times 10^{-19}\ C\times 1.55\ N/C}{9.1\times 10^{-31}\ kg}\times 0.395\ m

v = 647302.09 m/s

or

v=6.45\times 10^5\ m/s

So, the final velocity of the electron when it reaches point B is 6.45\times 10^5\ m/s. Hence, this is the required solution.

3 0
3 years ago
What is the name of the specification that indicates the frequencies that are dedicated for data transmission over cable lines?
mihalych1998 [28]
The answer to this question is the term
DOCSIS. A DOCSIS or Data Over Cable Service Interface Specification is a telecommunication standard or interface where in an internet was being provided by the use of cables. The advantage of using DOCSIS is that the speed of the internet is faster using this kind of interface.
4 0
2 years ago
A ball is thrown horizontally with a velocity of 12 m/s. How
miskamm [114]

Answer:

is there a picture of it

7 0
2 years ago
What is it known as when a force is applied to an object for an amount of time?.
alina1380 [7]
You strong to do that
8 0
2 years ago
A single Oreo cookie provides 53 kcal of energy. An athlete does an exercise that involves repeatedly lifting (without accelerat
Sever21 [200]

Answer:

Approximately 325 (rounded down,) assuming that g = 9.81\; {\rm N \cdot kg^{-1}}.

The number of repetitions would increase if efficiency increases.

Explanation:

Ensure that all quantities involved are in standard units:

Energy from the cookie (should be in joules, {\rm J}):

\begin{aligned} & 53\; {\rm kCal} \times \frac{1\; {\rm kJ}}{4.184\; {\rm kCal}} \times \frac{1000\; {\rm J}}{1\; {\rm kJ}} \approx 2.551 \times 10^{5}\; {\rm J} \end{aligned}.

Height of the weight (should be in meters, {\rm m}):

\begin{aligned} h &= 2\; {\rm dm} \times \frac{1\; {\rm m}}{10\; {\rm dm}} = 0.2\; {\rm m}\end{aligned}.

Energy required to lift the weight by \Delta h = 0.2\; {\rm m} without acceleration:

\begin{aligned} W &= m\, g\, \Delta h \\ &= 100\; {\rm kg} \times 9.81\; {\rm N \cdot kg^{-1}} \times 0.2\; {\rm m} \\ &= 196\; {\rm N \cdot m} \\ &= 196\; {\rm J} \end{aligned}.

At an efficiency of 0.25, the actual amount of energy required to raise this weight to that height would be:

\begin{aligned} \text{Energy Input} &= \frac{\text{Useful Work Output}}{\text{Efficiency}} \\ &= \frac{196\; {\rm J}}{0.25} \\ &=784\; {\rm J}\end{aligned}.

Divide 2.551 \times 10^{5}\; {\rm J} by 784\; {\rm J} to find the number of times this weight could be lifted up within that energy budget:

\begin{aligned} \frac{2.551 \times 10^{5}\; {\rm J}}{784\; {\rm J}} &\approx 325 \end{aligned}.

Increasing the efficiency (the denominator) would reduce the amount of energy input required to achieve the same amount of useful work. Thus, the same energy budget would allow this weight to be lifted up for more times.

4 0
1 year ago
Other questions:
  • Stiind ca de la cea mai apropriata stea din afara Sistemului noatru Solar lumina ar ajunge in 4,3ani in ce unitati de masura con
    9·1 answer
  • Which statement best defines energy?
    10·1 answer
  • Acceleration is the change of
    7·1 answer
  • An object increases its velocity from 20 m/s to 63 m/s in 10 s. What is the acceleration of the object?
    8·1 answer
  • Please help me out if you want brainliest !!!!! ASAP easy
    12·1 answer
  • How much would an 80.0kg person weigh on Mars, where the acceleration of gravity is 3.93m/s and in Earths moon, where the accele
    15·1 answer
  • The first charged object is exerting a force on the second charged object. Is the second charged object necessarily exerting a f
    15·1 answer
  • This is 8th grade science plz help
    15·1 answer
  • As compared to the asthenosphere, the lithosphere is ____________. a. hotter and more able to flow b. hotter and less able to fl
    11·1 answer
  • Please someone do this <br>please ​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!