Answer:
power, P = 90 hp
Explanation:
It is given that,
Mass of the car, m = 1500 kg
Initial velocity of car, u = 0
Final velocity of car, v = 25 m/s
Time taken, t = 7 s
We need to find the average power delivered by the engine. Work done divided by total time taken is called power delivered by the engine. It is given by :

According to work- energy theorem, the change in kinetic energy of the energy is equal to work done i.e.


P = 66964.28 watts
Since, 1 hp = 746 W
So, P = 89.76 hp
or
P = 90 hp
So, the average power delivered by the engine is 90 hp. Hence, the correct option is (E) " 90 hp".
Answer:
<h2>16.59 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>16.59 m/s²</h3>
Hope this helps you
Answer:
I think it is acute angle.
Explanation:
Because it is an angle between 0° and 90°. Hope this answer wil help you.
The boiling point of ethanol is at 78.37°C. So, the energy must include sensible heat to raise 19°C to the boiling point and latent heat to change liquid to gas. The equation would be
Energy = Sensible heat + Latent heat
Energy = mCpΔT + mΔH
For ethanol,
Cp = 46.068 + 102,460T - 139.63T² - 0.030341T³ + 0.0020386T⁴ J/kmol·K
ΔH = 38,560 J/mol
Integrate the Cp expression to determine CpΔT:
CpΔT = ∫₂₉₂³⁵²(46.068 + 102,460T - 139.63T² - 0.030341T³ + 0.0020386T⁴ )dT
The upper limit is (78.37+273) = 352 K, while the lower limit is (19 + 273) = 292.
CpΔT = 2384857192 J/kmol·K
2,000 J = m(2384857192 J/kmol)(1 kmol/1000 mol) + m(38,560 J/mol)
m = 8.253×10⁻⁴ moles of ethanol
Since the molar mass of ethanol is 46.07 g/mol,
Mass = (8.253×10⁻⁴ mol)(46.07 g/mol)
Mass = 0.038 g ethanol
Answer:
6j
uuuuuuus Jessica unmold sun wu disco if u duh tastes jealous happens