1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tamiku [17]
3 years ago
6

An unknown galaxy has a large flattened core. Which of the following classifications would best fit this galaxy's description? I

rregular Spiral Lens Elliptical
Physics
2 answers:
Alja [10]3 years ago
7 0

Answer:

Spiral

i know it is so dont say nun people

Explanation:

olga nikolaevna [1]3 years ago
4 0

Answer:

Lens

Explanation:

A lens galaxy has a large flattened core.

Spiral has arms.

Elliptical is a perfect sphere.

You might be interested in
Why are different constellations<br> of stars seen during different<br> seasons?
slamgirl [31]
Actually, they're not.  There's a group of stars and constellations arranged
around the pole of the sky that's visible at any time of any dark, clear night,
all year around.  And any star or constellation in the rest of the sky is visible
for roughly 11 out of every 12 months ... at SOME time of the night. 

Constellations appear to change drastically from one season to the next,
and even from one month to the next, only if you do your stargazing around
the same time every night.

Why does the night sky change at various times of the year ?  Here's how to
think about it:

The Earth spins once a day. You spin along with the Earth, and your clock is
built to follow the sun . "Noon" is the time when the sun is directly over your
head, and "Midnight" is the time when the sun is directly beneath your feet.

Let's say that you go out and look at the stars tonight at midnight, when you're
facing directly away from the sun.

In 6 months from now, when you and the Earth are halfway around on the other
side of the sun, where are those same stars ?  Now they're straight in the
direction of the sun.  So they're directly overhead at Noon, not at Midnight.

THAT's why stars and constellations appear to be in a different part of the sky,
at the same time of night on different dates.
5 0
3 years ago
Read 2 more answers
Cars A and B are racing each other along the same straight road in the following manner: Car A has a head start and is a distanc
4vir4ik [10]

The question is incomplete. Here is the complete question.

Cars A nad B are racing each other along the same straight road in the following manner: Car A has a head start and is a distance D_{A} beyond the starting line at t = 0. The starting line is at x = 0. Car A travels at a constant speed v_{A}. Car B starts at the starting line but has a better engine than Car A and thus Car B travels at a constant speed v_{B}, which is greater than v_{A}.

Part A: How long after Car B started the race will Car B catch up with Car A? Express the time in terms of given quantities.

Part B: How far from Car B's starting line will the cars be when Car B passes Car A? Express your answer in terms of known quantities.

Answer: Part A: t=\frac{D_{A}}{v_{B}-v_{A}}

              Part B: x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}}

Explanation: First, let's write an equation of motion for each car.

Both cars travels with constant speed. So, they are an uniform rectilinear motion and its position equation is of the form:

x=x_{0}+vt

where

x_{0} is initial position

v is velocity

t is time

Car A started the race at a distance. So at t = 0, initial position is D_{A}.

The equation will be:

x_{A}=D_{A}+v_{A}t

Car B started at the starting line. So, its equation is

x_{B}=v_{B}t

Part A: When they meet, both car are at "the same position":

D_{A}+v_{A}t=v_{B}t

v_{B}t-v_{A}t=D_{A}

t(v_{B}-v_{A})=D_{A}

t=\frac{D_{A}}{v_{B}-v_{A}}

Car B meet with Car A after t=\frac{D_{A}}{v_{B}-v_{A}} units of time.

Part B: With the meeting time, we can determine the position they will be:

x_{B}=v_{B}(\frac{D_{A}}{v_{B}-v_{A}} )

x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}}

Since Car B started at the starting line, the distance Car B will be when it passes Car A is x_{B}=\frac{v_{B}D_{A}}{v_{B}-v_{A}} units of distance.

5 0
3 years ago
A car is traveling at a speed of 54 km/h. Breaks are applied so as to produce a uniform acceleration of -0.5 m/s2. Find how far
Lena [83]

Explanation:

u=54 km/h

54*5/18=15 m/s

v=0m/s

t=?

acceleration=-0.5m/s^2

we know that a=v-u/t

so,

t=v-u/a

t=15-0/0.5

=15/0.5

=30

therefore, the time is 30 second

Hope this answer helps you..

8 0
3 years ago
The name of C (S) + o2 (g) CO2 (g)
USPshnik [31]

Answer:

carbon + oxygen → carbon dioxide

6 0
3 years ago
Yub87654d HELP there is this person trying to kid,.,nap,./, kids so if you see an account called Hernyana report there questions
Morgarella [4.7K]

Answer:

what???

Explanation:

7 0
3 years ago
Other questions:
  • __________ means to move from one region to another. When animals regularly move as a group from one region to another and back,
    14·2 answers
  • What happens when the kinetic energy of molecules increases so much that electrons are released by the atoms, creating a swirlin
    15·1 answer
  • Plz help True or False. The Electromagnetic Spectrum can be described in terms of wave energy, frequency, and wavelength.
    9·1 answer
  • Need Some Help Please :)
    11·2 answers
  • Plz help plz give u brainlist<br>state principal of pin hole camera??<br>​
    13·1 answer
  • In cats, short hair is dominant and long hair is recessive. If a cat has the genotype of hh, what type of hair will it have?
    7·1 answer
  • How does natural eutrophication affect a pond ecosystem?
    14·2 answers
  • A boiler is being used to heat water. The graph shows the temperature of
    11·1 answer
  • if a car is moving with a speed of 50km/s then calculate the distance covered by the car in 20 seconds
    8·2 answers
  • (03.04 MC)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!