What is the amount of cans so i can answer
Answer:
Probability that the measure of a segment is greater than 3 = 0.6
Step-by-step explanation:
From the given attachment,
AB ≅ BC, AC ≅ CD and AD = 12
Therefore, AC ≅ CD = 
= 6 units
Since AC ≅ CD
AB + BC ≅ CD
2(AB) = 6
AB = 3 units
Now we have measurements of the segments as,
AB = BC = 3 units
AC = CD = 6 units
AD = 12 units
Total number of segments = 5
Length of segments more than 3 = 3
Probability to pick a segment measuring greater than 3,
= 
= 
= 0.6
By using the concept of uniform rectilinear motion, the distance surplus of the average race car is equal to 3 / 4 miles. (Right choice: A)
<h3>How many more distance does the average race car travels than the average consumer car?</h3>
In accordance with the statement, both the average consumer car and the average race car travel at constant speed (v), in miles per hour. The distance traveled by the vehicle (s), in miles, is equal to the product of the speed and time (t), in hours. The distance surplus (s'), in miles, done by the average race car is determined by the following expression:
s' = (v' - v) · t
Where:
- v' - Speed of the average race car, in miles per hour.
- v - Speed of the average consumer car, in miles per hour.
- t - Time, in hours.
Please notice that a hour equal 3600 seconds. If we know that v' = 210 mi / h, v = 120 mi / h and t = 30 / 3600 h, then the distance surplus of the average race car is:
s' = (210 - 120) · (30 / 3600)
s' = 3 / 4 mi
The distance surplus of the average race car is equal to 3 / 4 miles.
To learn more on uniform rectilinear motion: brainly.com/question/10153269
#SPJ1
Answer:
The answer is 106
Step-by-step explanation:
angle B is equal to angle D
so do 91 + 15= 106
and the math at angle D is x - 15
hope this helps! :D
The distance of the two points should be (18+23) 41