Answer:
I can try
Step-by-step explanation:
Pictures always help; see the one I've attached for reference.
Call the first vector (from HQ to the supply drop) u and the second vector (from supply drop to medics) v. We then want to find w, the vector from the medics to HQ, which corresponds to the vector -(u + v). (This is because u + v is the vector pointing from HQ to the medics; we're talking about the one in the opposite direction.)
Write the vectors in horizontal/vertical component form:
u = (125 km) (cos 235º x + sin 235º y) = (-71.70 x - 102.39 y) km
v = (75 km) (cos 110º x + sin 110º y) = (-25.65 x + 70.48 y) km
Why these angles?
- "55 degrees south of west" is 235º; due west is 180º from the positive horizontal axis, and you add 55º to this
- "20 degrees west of north" is 110º; due north is 90º, so add 20º to this
Add the vectors:
u + v = (-97.35 x - 31.92 y) km
Multiply by -1 to get the vector w:
w = -(u + v) = (97.35 x + 31.92 y) km
The distance covered by this vector is equal to its magnitude:
||w|| = √((97.35 km)^2 + (31.92 km)^2) = 102.45 km
The direction <em>θ</em> is given by
tan<em>θ</em> = (31.92 km)/(97.35 km) ==> <em>θ</em> = 18.15º
Answer:
12 total possible outcomes
Step-by-step explanation:
Because these are independent events, or events that don't rely on each other, the key is to find the possibilites then multiply them all. There are four equal size sections, and three other equal sized sections, so we do 3 * 4 = 12.
Answer:
No there is no solution
Step-by-step explanation:
X cannot be found no matter how you try to solve the simultaneous equation so therefore y can also not be found.
Cosine of 60 and Cosine of 30