Check the picture below.
now, to get how much is the area of the tiled section, we simply get the area of the whole pool, 53x26, which includes the tiles, and then subtract the area without the tile, the rectangle in the middle, and what's leftover, is the area of the tiled area.

Answer:

Step-by-step explanation:
For this case we need to find the following integral:

And for this case we can use the substitution
from here we see that
, and if we solve for x we got
, so then we can rewrite the integral like this:

And if we distribute the exponents we have this:

Now we can do the integrals one by one:

And reordering the terms we have"

And rewriting in terms of x we got:

And that would be our final answer.
Answer:
See Explanation
Step-by-step explanation:
Let us briefly explain the terms
- Variable: This is the letter in the expression
- Coefficient: This is the number beside the letter above
- Constant: This is a number without any variable attached.
Let us take our expression with two terms to be: 3x+5
Coefficient =3
Variable =x
Constant =5
The word phrase of the expression is:
5 added to the product of 3 and a number.
well, looking at the picture of this vertically opening parabola, it has a vertex at 0,0 and it passes through 2,1 hmm ok
![~~~~~~\textit{vertical parabola vertex form} \\\\ y=a(x- h)^2+ k\qquad \begin{cases} \stackrel{vertex}{(h,k)}\\\\ \stackrel{"a"~is~negative}{op ens~\cap}\qquad \stackrel{"a"~is~positive}{op ens~\cup} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ y = a(x-0)^2+0\qquad \stackrel{\textit{we also know that}}{x=2\qquad y = 1}\qquad \implies 1=a(2-0)^2+0 \\\\\\ 1=4a\implies \cfrac{1}{4}=a~\hspace{10em} \boxed{y=\cfrac{1}{4}x^2}](https://tex.z-dn.net/?f=~~~~~~%5Ctextit%7Bvertical%20parabola%20vertex%20form%7D%20%5C%5C%5C%5C%20y%3Da%28x-%20h%29%5E2%2B%20k%5Cqquad%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7Bvertex%7D%7B%28h%2Ck%29%7D%5C%5C%5C%5C%20%5Cstackrel%7B%22a%22~is~negative%7D%7Bop%20ens~%5Ccap%7D%5Cqquad%20%5Cstackrel%7B%22a%22~is~positive%7D%7Bop%20ens~%5Ccup%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20y%20%3D%20a%28x-0%29%5E2%2B0%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Bwe%20also%20know%20that%7D%7D%7Bx%3D2%5Cqquad%20y%20%3D%201%7D%5Cqquad%20%5Cimplies%201%3Da%282-0%29%5E2%2B0%20%5C%5C%5C%5C%5C%5C%201%3D4a%5Cimplies%20%5Ccfrac%7B1%7D%7B4%7D%3Da~%5Chspace%7B10em%7D%20%5Cboxed%7By%3D%5Ccfrac%7B1%7D%7B4%7Dx%5E2%7D)