For this case we have the following equation:

We must find the value of "x":
We apply cube root on both sides of the equation to eliminate the exponent:
![x = \sqrt [3] {375}](https://tex.z-dn.net/?f=x%20%3D%20%5Csqrt%20%5B3%5D%20%7B375%7D)
We can write 375 as 
So:
![x = \sqrt [3] {5 ^ 3 * 3}\\x = 5 \sqrt [3] {3}](https://tex.z-dn.net/?f=x%20%3D%20%5Csqrt%20%5B3%5D%20%7B5%20%5E%203%20%2A%203%7D%5C%5Cx%20%3D%205%20%5Csqrt%20%5B3%5D%20%7B3%7D)
Then, the correct options are:
![x = \sqrt [3] {375}\\x = 5 \sqrt [3] {3}](https://tex.z-dn.net/?f=x%20%3D%20%5Csqrt%20%5B3%5D%20%7B375%7D%5C%5Cx%20%3D%205%20%5Csqrt%20%5B3%5D%20%7B3%7D)
Answer:
Option A and B
N<span><span><span>3</span><span></span></span>+4<span>n<span><span>2</span><span></span></span></span>+8n−16
hope helped
</span>
The answer is 9
9 times 2 = 18
9 times 5 = 45
Note: Since the symbols for greatest integer function (GIF) and least integer function (LIF) are not given, I will be using the words GIF and LIF in the solution
GIF x means largest integer less than or equal to x, and LIF x means least integer greater than or equal to x.
We need to determine which expressions are equal
Option 1: GIF 4.9 and LIF 3.1
GIF 4.9 = 3
LIF 3.1 = 4
Hence GIF 4.9 ≠ LIF 3.1
Option 2: GIF 15.2 and GIF 14.8
GIF 15.2 = 15
GIF 14.8 = 14
Hence, GIF 15.2 ≠ GIF 14.8
Option 3: GIF -6 and LIF -6
GIF -6 = -6
LIF -6 = -6
Hence, GIF -6 = LIF -6
Option 4: LIF -3.2 and LIF -2.6
LIF -3.2 = -2
LIF -2.6 = -1
Hence, LIF -3.2 ≠ LIF -2.6
Hence, only in Option C the pair of expressions are equal.
Answer:

Step-by-step explanation:
![\sqrt[3]{-\frac{1}{512}}=\frac{\sqrt[3]{-1}}{\sqrt[3]{512}}=\frac{-1}{8}=-\frac{1}{8}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-%5Cfrac%7B1%7D%7B512%7D%7D%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B-1%7D%7D%7B%5Csqrt%5B3%5D%7B512%7D%7D%3D%5Cfrac%7B-1%7D%7B8%7D%3D-%5Cfrac%7B1%7D%7B8%7D)