Answer:
- 1.602 x 10⁻¹⁹coulombs
Explanation:
Charge on individual oil droplet would be multiple of charge on one electron . So we will find out the minimum common factor of given individual charges that is the LCM of all the charges given.
LCM of given charges like 3.204 , 4.806 ,8.01 and 14.42 . We have neglected the power of ten( 10⁻¹⁹) because it is already a common factor to all.
The LCM is 1.602 . So charge on electron is 1.602 x 10⁻¹⁹.
14.285 % is the answer maybe but I am not sure
<span> <span>It means that the amount of mass will stay the same after the change occurs.</span></span>
Answer:
0.0468 g.
Explanation:
- The decay of radioactive elements obeys first-order kinetics.
- For a first-order reaction: k = ln2/(t1/2) = 0.693/(t1/2).
Where, k is the rate constant of the reaction.
t1/2 is the half-life time of the reaction (t1/2 = 1620 years).
∴ k = ln2/(t1/2) = 0.693/(1620 years) = 4.28 x 10⁻⁴ year⁻¹.
- For first-order reaction: <em>kt = lna/(a-x).</em>
where, k is the rate constant of the reaction (k = 4.28 x 10⁻⁴ year⁻¹).
t is the time of the reaction (t = t1/2 x 8 = 1620 years x 8 = 12960 year).
a is the initial concentration (a = 12.0 g).
(a-x) is the remaining concentration.
∴ kt = lna/(a-x)
(4.28 x 10⁻⁴ year⁻¹)(12960 year) = ln(12)/(a-x).
5.54688 = ln(12)/(a-x).
Taking e for the both sides:
256.34 = (12)/(a-x).
<em>∴ (a-x) = 12/256.34 = 0.0468 g.</em>
0s to 15s: constant speed/zero acceleration
15s to 40s: constant gradient, therefore constant deceleration