Answer:
<u>structural arrangements</u>
_______________________________________
<h2>properties of daimond: </h2><h3>appearance: transparent</h3><h3>hardness: very hard</h3><h3>thermal conductivity :very poor</h3><h3>electric conductivity: poor</h3><h3>density:</h3>

<h3>uses: jewellery and drilling</h3>
_______________________________________
<h2>properties of graphite:</h2>
<h3>appearance: black shiny</h3><h3>hardness: soft ,slippery to touch</h3><h3>thermal conductivity : moderate</h3><h3>electric conductivity: good</h3><h3>density:</h3>

<h3>uses:dry cell, electric arc, pencil lead, lubricant</h3>
_______________________________________
<h2>How Diamond and Graphite are chemically identical?</h2>
- On heating diamond or graphite in the air, they burn completely to form carbon dioxide.
- - Equal quantities of diamond and graphite when burned, produce exactly the same amount of carbon dioxide.
_______________________________________
<h2>Why the physical properties of diamond and graphite are so different?</h2>
Due to the difference in the arrangement of carbon atoms in diamond and graphite
_______________________________________
<h2>
<em><u>hope</u></em><em><u> it</u></em><em><u> helps</u></em><em><u> you</u></em><em><u><</u></em><em><u>3</u></em></h2>
CaBr2(s) Ca+2(aq)+2Br-(aq) which means, <span>Solid is turning into free ions so entropy is increasing .</span>
Answer:
207.03°C
Explanation:
The following data were obtained from the question:
V1 (initial volume) = 6.80 L
T1 (initial temperature) = 52.0°C = 52 + 273 = 325K
P1 (initial pressure) = 1.05 atm
V2 (final volume) = 7.87 L
P2 (final pressure) = 1.34 atm
T2(final temperature) =?
Using the general gas equation P1V1/T1 = P2V2/T2, the final temperature of the gas sample can be obtained as follow:
P1V1/T1 = P2V2/T2
1.05 x 6.8/325 = 1.34 x 7.87/T2
Cross multiply to express in linear form as shown below:
1.05 x 6.8 x T2 = 325 x 1.34 x 7.87
Divide both side by 1.05 x 6.8
T2 = (325 x 1.34 x 7.87) /(1.05 x 6.8)
T2 = 480.03K
Now, let us convert 480.03K to a number in celsius scale. This is illustrated below:
°C = K - 273
°C = 480.03 - 273
°C = 207.03°C
Therefore, the final temperature of the gas will be 207.03°C
Answer: 39 electrons
Explanation: Subtract 79 by 40 to get the atomic number (amount of protons) which is 39. The number of electrons must be the same as the number of protons if it's not an ionic compound so the amount of electrons is the same amount of protons.
Answer: D
Explanation: Keeping the pressure constant and increasing the temperature.