Answer:
the answer is $47.70
Step-by-step explanation:
Answer:
8.2+/-0.25
= ( 7.95, 8.45) years
the 95% confidence interval (a,b) = (7.95, 8.45) years
Step-by-step explanation:
Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.
The confidence interval of a statistical data can be written as.
x+/-zr/√n
Given that;
Mean x = 8.2 years
Standard deviation r = 1.1 years
Number of samples n = 75
Confidence interval = 95%
z value(at 95% confidence) = 1.96
Substituting the values we have;
8.2+/-1.96(1.1/√75)
8.2+/-1.96(0.127017059221)
8.2+/-0.248953436074
8.2+/-0.25
= ( 7.95, 8.45)
Therefore the 95% confidence interval (a,b) = (7.95, 8.45) years
Answer:
See attached pictures.
Step-by-step explanation:
See attached pictures.
9514 1404 393
Answer:
31.243 units
Step-by-step explanation:
The mnemonic SOH CAH TOA reminds you of the relationships between sides and angles in a right triangle. Using the attached figure, it is convenient to find the length of BE as an intermediate step in the solution.
Sin = Opposite/Hypotenuse
sin(30°) = BE/100
BE = 100·sin(30°)
Then ...
Tan = Opposite/Adjacent
tan(58°) = BE/x
x = BE/tan(58°) = 100·sin(30°)/tan(58°)
x ≈ 31.243 . . . . units
_____
<em>Comment on the figure</em>
The intermediate problem in creating the figure was to locate point D. That was accomplished by locating point C on a line at an angle of 58° CCW from the horizontal, using point B as a center. Then D is the intersection of BC with the x-axis. BE is drawn perpendicular to the x-axis.
Answer:
The decimal form of
.
Step-by-step explanation:
We proceed to find the decimal form of
, whose description is found below:
1) Multiplying the numerator by 100 and dividing it by 15:
Partial result: 0.06, Remainder: 10
2) Multiplying the remainder by the 10 and dividing it by 15:
Partial result: 0.066, Remainder: 10
3) Multiplying the remainder by the 10 and dividing it by 15:
Partial result: 0.0666, Remainder: 10
Since the decimal number is a infinite and periodical, we conclude that decimal form of
.