5pi/6 r^2 = 15pi
R^2 = 18
R= 3sqrt(3)
Answer:
14
Step-by-step explanation:
Yes; you are correct.
___________________________________________________
The correct answer is:
___________________________________________________
Answer choice: [C]: " x³ − 9x² + 23x <span>− 12 " .
___________________________________________________
Note: (a </span>− b) (c − d + e) = ac − ad + ae − bc + bd − be ;
___________________________________________________
(x − 4) (x² <span>− 5x + 3) =
x * x</span>² = x³ <span>−
x * 5x = 5x</span>² +
x * 3 = 3x <span>−
4 * x</span>² = 4x² <span>−
-4 * 5x = -20x +
-4 * 3 = -12;
________________________________________
</span> (x − 4) (x² − 5x + 3) =
x³ − 5x² + 3x −4x² − (-20x) + (-12) ;
= x³ − 5x² + 3x −4x² + 20x − 12 ;
= x³ − 5x² − 4x² + 3x + 20x − 12 ;
= x³ − 9x² + 23x − 12 ; which is:
__________________________________________________
Answer choice: [C]: " x³ − 9x² + 23x − 12 " .
__________________________________________________
Answer:
m
Step-by-step explanation:
Let
Bas length of box=b
Height of box=h
Material used in constructing of box=36 square m
We have to find the height h and base length b of the box to maximize the volume of box.
Surface area of box=




Volume of box, V=
Substitute the values


Differentiate w. r.t b







The negative value of b is not possible because length cannot be negative.
Again differentiate w.r.t b

At

Hence, the volume of box is maximum at
.




m
1) 78.5/pi = 25
radius = 5
The one 5 digits away from that coordinate is (2,-1)
2) This question is area, not perimeter. The width and length has to be added by 4 because of 2 feet on both sides.
9*10 = 90 - 30 = 60
3) 25pi according to pythagorean theorem.