Answer:
0.185moles
Explanation:
Given parameters:
Volume of O₂ = 49.8L
Unknown:
Number of moles of sucrose required = ?
Solution:
We can assume that the reaction takes place at standard temperature and pressure.
From this, we can find the number of moles of oxygen that reacted and extrapolate to that of sucrose.
Chemical equation;
C₁₂H₂₂0₁₁ + 120₂ → 12CO₂ + 11H₂0
Number moles =
at STP
Number of moles of oxygen gas =
= 2.22moles
12 moles of oxygen gas combines with 1 mole of sucrose
2.22 moles of oxygen gas will combine with
= 0.185moles
This problem could be solved through the Graham’s law of
effusion (also known as law of diffusion). This law states that the ratio of
the effusion rate of the first gas and effusion rate of the second gas is
equivalent to the square root of the ratio of its molar mass. Thus the answer
would be 0.1098.
Answer:
The importance of crystal structure. The graphite-diamond mineral pair is an extreme example of the importance of crystal structure. These two very different minerals have exactly the same chemical formula (C), but the crystal structure of the two minerals is very different. In graphite, carbon atoms are bonded together along a flat plane, as shown in Figure 3.
Answer:
low
Explanation:
We were informed in the question that the student had incorrectly recorded the mass of cup + sample as 2.20 g but inadvertently used 2.00 g in the calculations.
This error will cause a slight decrease in the mass of water and ultimately decrease the number of moles of water in the hydrate.
What i am saying is that the number of moles of water obtained in the calculation will be artificially low.