Answer is: Keq expression for this system is Keq = <span>[O</span>₂<span> ]</span> · [H₂<span>]</span>² ÷ [H₂O<span>]</span>².<span>
Chemical reaction: 2H</span>₂O(g) ⇄ O₂(g) + 2H₂(g).
The equilibrium constant<span> (Keq) is a ratio of the concentration of the products (in this reaction oxygen and hydrogen) to the concentration of the reactants (in this reaction water).</span>
Answer:
Near the boiling point of the solvent
Explanation:
The process of recrystallization is hinged on the fact that the amount of solute that can be dissolved by a solvent increases with temperature. The process involves creation of a solution by dissolving a solute in a solvent at or near its boiling point. At the boiling point of the solvent, the solute has a greater solubility in the solvent; not much volume of the hot solvent is required to dissolve the solute.
Before the solution is later cooled, you can now filter out insoluble impurities from the hot solvent. The quantity of the original solute drops appreciably because impurities have been removed. At this lower temperature, the solution becomes saturated and the solute can no longer be held in solution hence it forms pure crystals of solute, which can be recovered.
Recrystallization must be carried out using the proper solvent. The solute must be relatively insoluble in the solvent at room temperature but more soluble in the solvent at elevated temperature.
Answer is: <span>excited state.
In </span>excited state, hydrogen has<span> higher </span>energy<span> than in the </span>ground state (state with lowest energy). H<span>ydrogen atom has one </span>electron<span> in the lowest possible </span>orbit<span> (1s), when atom absorbs</span><span> energy</span><span>, the electron move into an excited state (quantum numbers greater than the minimum possible). </span>Electron lifetime in excited state is short.
The electron configuration of V³⁺ is [Ar]
. The ion is paramagnetic because it has two unpaired electrons
<h3>
What is paramagnetic?</h3>
- A weak magnetic field supplied externally can weakly attract some materials, which then create internal magnetic fields that are directed in the same direction as the applied magnetic field. This phenomenon is known as paramagnetic.
- Diamagnetic materials, in contrast, are attracted to magnetic fields and produce induced magnetic fields that are directed in the opposite direction from the applied magnetic field.
- The majority of chemical elements and some compounds are considered to be paramagnetic materials.
- Paramagnetic materials have a relative magnetic permeability that is somewhat more than 1, which makes them attracted to magnetic fields.
- The applied field induces a linearly decreasing magnetic moment that is relatively weak.
- Modern experiments on paramagnetic materials are frequently done with a sensitive analytical balance since it typically requires a sensitive analytical balance to identify the effect.
To learn more about paramagnetic with the given link
brainly.com/question/18865305
#SPJ4
Answer:
P-positive
N-negative
E-no charge