Answer:
1. d[H₂O₂]/dt = -6.6 × 10⁻³ mol·L⁻¹s⁻¹; d[H₂O]/dt = 6.6 × 10⁻³ mol·L⁻¹s⁻¹
2. 0.58 mol
Explanation:
1.Given ΔO₂/Δt…
2H₂O₂ ⟶ 2H₂O + O₂
-½d[H₂O₂]/dt = +½d[H₂O]/dt = d[O₂]/dt
d[H₂O₂]/dt = -2d[O₂]/dt = -2 × 3.3 × 10⁻³ mol·L⁻¹s⁻¹ = -6.6 × 10⁻³mol·L⁻¹s⁻¹
d[H₂O]/dt = 2d[O₂]/dt = 2 × 3.3 × 10⁻³ mol·L⁻¹s⁻¹ = 6.6 × 10⁻³mol·L⁻¹s⁻¹
2. Moles of O₂
(a) Initial moles of H₂O₂
(b) Final moles of H₂O₂
The concentration of H₂O₂ has dropped to 0.22 mol·L⁻¹.
(c) Moles of H₂O₂ reacted
Moles reacted = 1.5 mol - 0.33 mol = 1.17 mol
(d) Moles of O₂ formed
Answer:
Correct choice are C and D (they are both, the same).
Explanation:
Cathode is the positive(+) electrode where a reduction occurs.
Reduction is the chemical reaction where the oxidation state is reduced.
2Ag(s) + 1/2 O2(g) + 2H+(aq) → 2Ag+(aq) + H2O (l)
A. 2H2O (l) → O2 (g) + 4H+ (aq) + 4e-
B. 2Ag (s) → 2Ag+ (aq) + 2e-
C. 1/2 O2 (g) + 2H+ (aq) + 2e- → H2O (l)
D. 1/2 O2 (g) + 2H+ (aq) + 2e- → H2O (l)
C or D, are ok. They are the same equation.
Oxygen from ground state reduce the oxidation state from 0 to -2
Answer:
The correct option is: protons; electrons
Explanation:
The electron transport chain contains a series of biomolecules that are involved in the transfer of electrons by redox reactions.
This process involves the transfer of electrons from an <u>electron donor molecule to an electron acceptor molecule</u>, resulting in the <u>release of energy.</u> Some amount of this energy is then used in <u>pumping the protons across the biological membrane.</u>
Answer:
lonic Bonds are created by free electrons.
They are created between a metal and nonmetal.
And they create complex compounds.
I think it’s A. Troposphere❤️