I'm assuming that by "miles" you mean moles.
If O2 is the excess reactant, that means Fe is the limiting reactant. That means that the amount of product being formed depends on the amount of Fe reactant present. To calculate the moles of Fe2O3 formed, start with the given 6.4 moles of Fe and use the mole to mole ratio given by the reaction as shown below:
6.4 mol Fe x

=
3.2 mol Fe2O3
Answer:
beakers and flasks
Explanation:
its better to use accurate measuring instruments for measuring volume
Answer:
50 km/hr
Explanation:
just divide the distance by the time (350/7)
Answer:
You can do that yourself, but there's a example question below. And, if for example, I just answer your question and you don't even try to answer. it dosent matter.
Explanation:Force=Mass x Acceleration -or- F=ma
where F is the force, m is the mass, and a is the acceleration. The units are Newtons (N) for force, kilograms (kg) for mass, and meters per second squared (m/s2) for acceleration. The other forms of the equation can be used to solve for mass or acceleration.
m=F/a and a=F/m Example:
Engineers at the Johnson Space Center must determine the net force needed for a rocket to achieve an acceleration of 70 m/s2. If the mass of the rocket is 45,000 kg, how much net force must the rocket develop?
Using Newton's second law, F=ma
F=(45,000 kg)(70 m/s2) = 3,150,000 kg m/s2 F=3,150,000 N Note that the units kg m/s2 and newtons are equivalent; that is, 1 kg m/s2
Answer:
The differemt isotopes that differ in atomic mass
Explanation: