Answer:
Keq: [SO3][NO] /[SO2]NO2]
Explanation:
Answer:
The mass of tin is 164 grams
Explanation:
Step 1: Data given
Specific heat heat of tin = 0.222 J/g°C
The initial temeprature of tin = 80.0 °C
Mass of water = 100.0 grams
The specific heat of water = 4.184 J/g°C
Initial temperature = 30.0 °C
The final temperature = 34.0 °C
Step 2: Calculate the mass of tin
Heat lost = heat gained
Qlost = -Qgained
Qtin = -Qwater
Q = m*c*ΔT
m(tin)*c(tin)*ΔT(tin) = -m(water)*c(water)*ΔT(water)
⇒with m(tin) = the mass of tin = TO BE DETERMINED
⇒with c(tin) = the specific heat of tin = 0.222J/g°C
⇒with ΔT(tin) = the change of temperature of tin = T2 - T1 = 34.0°C - 80.0°C = -46.0°C
⇒with m(water) = the mass of water = 100.0 grams
⇒with c(water) = the specific heat of water = 4.184 J/g°C
⇒with ΔT(water) = the change of temperature of water = T2 - T1 = 34.0° C - 30.0 °C = 4.0 °C
m(tin) * 0.222 J/g°C * -46.0 °C = -100.0g* 4.184 J/g°C * 4.0 °C
m(tin) = 163.9 grams ≈ 164 grams
The mass of tin is 164 grams
In titration, the moles of acid equal moles of base. You were given that 22.75ml of 0.215M NaOH is used, so calculate the number of moles of that base the experiment used in total. After that because you know mol base = mol acid, whatever amount of base you use must be the total amount of acid present in the solution. You were given the volume of the acid, and you have just found the total mols of acid. Using these two information, solve for the concentration. And one more thing, even though I'm pretty sure it won't affect your answer, you should always convert things to the proper units. Since the concentration we're talking about in this problem is molarity, which has the unit mol/L, you should always have all of your numbers in these units. It just make it simpler and will not confuse you
1) divide each percentage by the relative atomic mass of the element
2) divide all results by the smallest number
3)multiply by a whole number to get the simplest whole number ratio (if necessary)
that is to say:
Na S O
32.37÷23 22.58÷32 45.05÷16
= 1.407 = 0.7056 = 2.816 (to 4 significant figures)
the smallest number here is 0.7056 so:
1.407÷0.7056 0.7056÷0.7056 2.816÷0.7056
=1.99 approx.2 = 1 3.99 approx. 4
here there is no need to carry out step 3 as ratio obtained is already a simplest whole number ratio
so empirical formula is: Na₂SO₄
2) mg donates two protons to O.