Transport of Na+ from a place of low concentration to a place of higher concentration. <u>This is the right answer.</u>
<u />
The sodium-potassium pump is the most common and well-known example of active transport. At the cell membrane, the sodium-potassium pump moves 3 sodium ions out of the cell and two potassium ions into the cell per ATP. Examples of active transport include the uptake of glucose in the human intestine and the uptake of minerals and ions into the root hair cells of plants.
One of the greatest examples of active transport is the movement of calcium ions out of cardiomyocytes. Cells secrete proteins such as enzymes, antibodies, and various other peptide hormones. Amino acids are transported across the intestinal mucosa of the human intestine. The movement of ions or molecules across cell membranes to regions of a higher concentration is assisted by enzymes and requires energy.
Learn more about Active transport here:-brainly.com/question/25802833
#SPJ1
Answer to Diethyl ether can<span> be made from </span>ethanol<span>. The </span>reaction<span> is 2C2H5OH(</span>l) ----> (C2H5)2 O(l<span>) + </span>H2O(l<span>) The </span>percent yield<span> of diet...</span>
Answer:
Multicellular
Explanation:
Prokaryotic cells are unicellular because the do not have a nucleus and lack organelles, while eukaryotic cells do have a nucleus, have organelles, and are are multicellular. :)
Answer:
71.372 g or 0.7 moles
Explanation:
We are given;
- Moles of Aluminium is 1.40 mol
- Moles of Oxygen 1.35 mol
We are required to determine the theoretical yield of Aluminium oxide
The equation for the reaction between Aluminium and Oxygen is given by;
4Al(s) + 3O₂(g) → 2Al₂O₃(s)
From the equation 4 moles Al reacts with 3 moles of oxygen to yield 2 moles of Aluminium oxide.
Therefore;
1.4 moles of Al will require 1.05 moles (1.4 × 3/4) of oxygen
1.35 moles of Oxygen will require 1.8 moles (1.35 × 4/3) of Aluminium
Therefore, Aluminium is the rate limiting reagent in the reaction while Oxygen is the excess reactant.
4 moles of aluminium reacts to generate 2 moles aluminium oxide.
Therefore;
Mole ratio Al : Al₂O₃ is 4 : 2
Thus;
Moles of Al₂O₃ = Moles of Al × 0.5
= 1.4 moles × 0.5
= 0.7 moles
But; 1 mole of Al₂O₃ = 101.96 g/mol
Thus;
Theoretical mass of Al₂O₃ = 0.7 moles × 101.96 g/mol
= 71.372 g