1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetach [21]
3 years ago
6

A sprinter has a mass of 80 kg and a KE of 4000 J. What is the sprinter’s speed?

Physics
2 answers:
djyliett [7]3 years ago
8 0
There you go.

Hope this helps!

Sladkaya [172]3 years ago
4 0

               Kinetic Energy  =  (1/2) (mass) (speed)²

                         4,000 J  =  (1/2) (80 kg) (speed)²    

Divide each side
by  40 kg :            4,000 J / 40 kg  =  speed²

                                    100 m²/s²  =  speed²
Square root
each side:                         10 m/s  =  speed
You might be interested in
A 95kg fullback (football player for those not into sports) moving south with a speed of 5.0 m/s has a perfectly inelastic colli
Lunna [17]

Answer:

a.  v=3.11mls, 29.4^{0}

b.   K.E =-697.8J

Explanation:

To calculate the values in the  question, a deep understanding of perfect inelastic collision is important.

When two bodies undergo inelastic collision, two important parameters must be well understood i.e

Momentum: the momentum is always conserved in perfectly inelastic collision. i.e the total momentum after collision is the sum of the individual momentum before collision

Kinetic energy: Kinetic energy is not conserved due to dissipative force.

a.To calculate the velocity, we first find the total momentum before collision

Momentum of player 1 p_{1} =mv=95kg*5m/s\\p_{1} =475kgm/s\\

Momentum of player 2 p_{2} =mv=90kg*3m/s\\p_{1} =270kgm/s\\

Hence the total momentum p_{12}=p_{1}+p_{2}\\

Note, since the direction of movement before collision is due south and  due north respectively we have to represent the velocity using the rectangular coordinate

Hence  p_{12}=(m_{1}+m_{2})v=p_{1}i+p_{2}j\\

(95+90)v=475i+270j\\

v=2.57i+1.45j\\

solving for the resultant velocity, we have

v=\sqrt{2.75^{2} +1.45^{2}}\\ v=3.11mls

To calculate the direction of movement, we have

\alpha =tan^{-1}=\frac{v_{j} }{v_{i}}\\  \alpha =tan^{-1}=\frac{1.45}{2.57}\\\alpha =29.4^{0}

b. to calculate the decrease in total kinetic energy, before collision, the total kinetic was

K.E_{initial} =\frac{1}{2}m_{1}v_{1}^{2}+\frac{1}{2}m_{2}v_{2}^{2}.\\K.E_{initial} =((1/2)*95*5^{2})+((1/2)*90*3^{2})\\K.E_{initial} =1187.5+405\\K.E_{initial} =1592.5J\\

And the final kinetic energy after collision is

K.E_{final} =\frac{1}{2}(m_{1}+m_{2} )v^{2}\\  K.E_{final} =\frac{1}{2}(95+90)* 3.11^{2}\\ K.E_{final} =894.7J

The decrease in Kinetic energy is

K.E =K.E_{final}- K.E_{initial}=894.7-1592.5

K.E =-697.8J

The negative sign indicate a decrease in Kinetic energy

4 0
3 years ago
A block of ice with mass 2.00 kg slides 0.750 m down an inclined plane that slopes downward at an angle of 36.9 degrees below th
zhannawk [14.2K]

Answer: V_{f}=2.96m/s    

Firstly we have to draw the Free Body Diagram (FBD) as shown in the figure attached.

Where the weight w of the block has an x-component and y-component:

w_{x}=wsin(\theta)    (1)

w_{y}=wcos(\theta)    (2)

As well as the Normal Force N:

N_{x}=Nsin(\theta)    (3)

N_{y}=Ncos(\theta)    (4)

In addition, we know N=w, then \sum F_{y}=0

In the X-component:

\sum F_{x}=m.a

m.a=w_{x}    (5)

Substituting (1) in (5):

wsin(\theta)=m.a    (6)

In addition, we know w=m.g, where m is the mass of the block and g the gravity acceleration, which is equal to 9.8m/{s}^{2}  

So:

m.g.sin(\theta)=m.a   (7)

a=g.sin(\theta)    (8)

a=5.88m/{s}^{2}    (9)   >>>>This is the acceleration of the block

On the other hand, we have the following equation that expresses a <u>relation between</u> the distance d with the acceleration a and time t:

d=\frac{1}{2}a{t}^{2}   (10)

We already know the value of  d and calculated a, we have to find t:

t=\sqrt{\frac{2d}{a}}   (11)

t=\sqrt{\frac{2(0.75m)}{5.88m/{s}^{2}}}   (12)

t=0.50s   (13) >>>This is the time it takes to the block to go from the initial velocity V_{o} to its final velocity V_{f}

If the acceleration is the variation of the velocity in time, we can use the following equation to find V_{f}:

V_{f}-V_{o}=a.t   (13)

If V_{o}=0

V_{f}=a.t   (14)

V_{f}=(5.88m/{s}^{2})(0.50s)   (15)

Finally we get the value of the Final Velocity of the block:

V_{f}=2.96m/s    

6 0
3 years ago
A 100 g wire is held under a tension of 250 n with one
sashaice [31]
So??
what is the question??
6 0
3 years ago
What is the equivalent resistance between points A and C if R1=1430, R2=1350, R3=1100, R4=1350, and R5=1150.
Marianna [84]

R1 + R4 = 1430 + 1350 = 2780 = R14    series combination of R1 & R4

R2 + R5 = 1350 + 1150 = 2500 = R25

The circuit has been reduced to 3 resistors in parallel

R314 = 2780 * 1100 / (2780 + 1100) = 788  this is the resistance of the parallel combination of R14 and R3

R31425 = 2500 * 788 / (2500 + 788) = 599 which is the equivalent of the circuit  - you can also use the formula for 3 resistors in parallel but this seems simpler

7 0
3 years ago
What’s the answer???
inna [77]

Answer: ( 2nd ) ( 3 )

Explanation:

4 0
2 years ago
Other questions:
  • A projectile is thrown at an angle 30° from horizontal. Which statement about its vertical component of velocity is true?
    8·1 answer
  • 1 2 3 4 5 6 7 8 9 10
    7·2 answers
  • Two radioactive nuclei A and B are present in equal numbers to begin with. Three days later, there are 4.04 times as many A nucl
    8·1 answer
  • Which equation is used to calculate the magnetic force on a charge moving in a magnetic field? F = |q|vBcos F = |q|vBsin F = |q|
    15·2 answers
  • A rock is dropped off a cliff and falls the first half of the distance to the ground in t1 seconds. If it falls the second half
    5·1 answer
  • A solid of density 8000 kgm.. weighs 0.8 kgf in air. When it is completely
    12·1 answer
  • What form of energy is a bonfire and a bunsen burner?
    11·1 answer
  • A car accelerates from rest at a rate of 4 m/s’2 . How many seconds will it take the car to reach a final speed of 16m/s
    7·1 answer
  • 4. A car travels 3 km due North, then 5 km East Represent
    12·1 answer
  • An object is thrown with a horizontal velocity of 49mt/sec and a vertical velocity of 18.8 mt/sec. How long will the object take
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!