Distillation, Magnetism, Filtration, Crystallization, Extraction,
Answer:
U = √Rg/sin2θ
Explanation:
Using the formula for "range" in projectile motion to derive the average speed before the ball hits the ground.
Range is the distance covered by the body in the horizontal direction from the point of launch to the point of landing.
According to the range formula,
R = U²sin2θ/g
Cross multiplying we have;
Rg = U²sin2θ
Dividing both sides by sin2θ, we have;
U² = Rg/sin2θ
Taking the square root of both sides we have;
√U² = √Rg/sin2θ
U = √Rg/sin2θ
Therefore, his average speed if he is to meet the ball just before it hits the ground is √Rg/sin2θ
A. Energy is transmitted by all waves.
Answer:
If inflation is relatively lower than competitors, then the countries goods will become more attractive and demand will rise. Lower inflation tends to increase the value of the currency in the long term.
Explanation:
If the kinetic energy of each ball is equal to that of the other,
then
(1/2) (mass of ppb) (speed of ppb)² = (1/2) (mass of gb) (speed of gb)²
Multiply each side by 2:
(mass of ppb) (speed of ppb)² = (mass of gb) (speed of gb)²
Divide each side by (mass of gb) and by (speed of ppb)² :
(mass of ppb)/(mass of gb) = (speed of gb)²/(speed of ppb)²
Take square root of each side:
√ (ratio of their masses) = ( 1 / ratio of their speeds)²
By trying to do this perfectly rigorously and elegantly, I'm also
using up a lot of space and guaranteeing that nobody will be
able to follow what I have written. Let's just come in from the
cold, and say it the clear, easy way:
If their kinetic energies are equal, then the product of each
mass and its speed² must be the same number.
If one ball has less mass than the other one, then the speed²
of the lighter one must be greater than the speed² of the heavier
one, in order to keep the products equal.
The pingpong ball is moving faster than the golf ball.
The directions of their motions are irrelevant.