<span>DNA contains the code for all an organism's protein. Since many of the organism's structures, processes, and growth depend on protein the DNA is central to the well being of all organisms. In eukaryotes, the DNA is locked up in the nucleus. The area of the cell where proteins are made is in the cytosol (ribosomes). In order for the protein to be made the DNA has to produce a copy of the blueprint m-RNA. This messenger RNA will take the code to the ribosome. The process by which m-RNA is made is called transcription. A-U, C-G base pairing rules. Once on the ribosome another RNA comes into play t-RNA. This is called transfer RNA. Here it will take an amino acid and place it in the correct order to produce the desired protein. This is called translation. It begins with a start co don AUG. and ends with a stop codon. The protein will then go to the Golgi apparatus and be formed into its final shape.
HOPE IT HELPS</span>
Igneous - A rock formed by the cooling and crystallization of magma (molten rock) at or below the Earth's surface. Sedimentary - A rock formed as a result of the weathering process, either by compaction and cementation of rock mineral fragments, or the precipitation of dissolved minerals.
I believe its your heart if I am not mistaken hope this helps ^^;
Considering the following;
I. Heat is not readily available to all living cells.
II. Heat at excessive amounts denatures proteins.
III. Heat does not provide the activation energy for their reactions.
IV. When a critical temperature is reached, proteins no longer function
Answer;
I and IV
Explanation;
Living cells cannot use heat to provide the activation energy for biochemical reactions because heat is not readily available to all living cells and also when a critical temperature is reached, proteins no longer function.
Too much heat can kill an organism by rendering its organelles, cells, tissues and organs permanently inoperable and un-salvageable. The same process can be observed in tissues at low temperatures, and is the cause of frostbite. This is because enzymes are denatured by high temperature and inactivated by low.