Answer:
![\log_{2} [\frac{x^{3}(x + 4)}{3}]](https://tex.z-dn.net/?f=%5Clog_%7B2%7D%20%5B%5Cfrac%7Bx%5E%7B3%7D%28x%20%2B%204%29%7D%7B3%7D%5D)
Step-by-step explanation:
We have to write the following logarithmic expression as a single logarithm.
The given expression is
![3\log_{2} x - [\log_{2} 3 - \log_{2}(x + 4)]](https://tex.z-dn.net/?f=3%5Clog_%7B2%7D%20x%20-%20%5B%5Clog_%7B2%7D%203%20-%20%5Clog_%7B2%7D%28x%20%2B%204%29%5D)
= 
{Since,
, from the properties of logarithmic function }
= 
{Since,
, which also a logarithmic property}
= ![\log_{2} [\frac{x^{3}}{\frac{3}{x + 4}}]](https://tex.z-dn.net/?f=%5Clog_%7B2%7D%20%5B%5Cfrac%7Bx%5E%7B3%7D%7D%7B%5Cfrac%7B3%7D%7Bx%20%2B%204%7D%7D%5D)
=
(Answer)
The range is how much it spans in f(x), f(x) is a line, it has no max/min, so it's enough to substitute the least and greatest values of your domain:
f(-2) = -5, f(4)=7,
Range = [-5,7]
Answer:
either 1:2 or 2:1. I think.
Answer:
THE ANSWER IS 4.50
Step-by-step explanation: