1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jekas [21]
3 years ago
15

Consider a thermal energy reservoir at 1500 K that can supply heat at a rate of 150,000 kJ/h. Determine the exergy of this suppl

ied energy, assuming an environment temperature of 25°C.
Engineering
1 answer:
ANEK [815]3 years ago
5 0

Answer:

exergy = 33.39 kW

Explanation:

given data

thermal energy reservoir T2 = 1500 K

heat at a rate = 150,000 kJ/h = \frac{15000}{3600} kW =  41.67 kW

environment temperature T1 = 25°C = 298 K

solution

we get here maximum efficiency that is  reversible efficiency is express as

reversible efficiency = 1 - \frac{T1}{T2}    ...............1

reversible efficiency = 1 - \frac{298}{1500}  

reversible efficiency =  0.80133

and

the exergy of this supplied energy that is

exergy  = efficiency × hat supply   ................2

exergy = 0.80133 × 41.67 kW

exergy = 33.39 kW

You might be interested in
Say you have a random, unordered list containing 4096 four-digit numbers. Describe the most efficient way to: sort the list and
Debora [2.8K]

Answer:

Answer explained below

Explanation:

It is given that numbers are four-digit so maximum value of a number in this list could be 9999.

So we need to sort a list of integers, where each integer lies between [0,9999].

For these given constraints we can use counting sort which will run in linear time i.e. O(n).

--------------------------------------------------------------------------------

Psuedo Code:

countSort(int numList[]) {

int count[10000];

count[i] = 0; for all i;

for(int num in numList){

count[num]+= 1;

}

return count;

}

--------------------------------------------------------------------------------

Searching in this count array will be just O(1).

E.g. Lets say we want to search if 3 was present in the original list.

Case 1: it was present in the original list:

Then the count[3] would have been incremented by our sorting algorithm. so in case element exists then count value of that element will be greater than 0.

Case 2: it was not present:

In this case count[3] will remain at 0. so in case element does not exist then count of that element will be 0.

So to search for an element, say x, we just need to check if count[x]>0.

So search is O(1).

Run times:

Sorting: O(n)

Search: O(1)

6 0
3 years ago
Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K, 278 kPa and exits at 120 kPa. The mass flow ra
gladu [14]

Answer:

a) T_{2}=837.2K

b) e=91.3 %

Explanation:

A) First, let's write the energy balance:

W=m*(h_{2}-h_{1})\\W=m*Cp*(T_{2}-T_{1})  (The enthalpy of an ideal gas is just function of the temperature, not the pressure).

The Cp of air is: 1.004 \frac{kJ}{kgK} And its specific R constant is 0.287 \frac{kJ}{kgK}.

The only unknown from the energy balance is T_{2}, so it is possible to calculate it. The power must be negative because the work is done by the fluid, so the energy is going out from it.

T_{2}=T_{1}+\frac{W}{mCp}=1040K-\frac{1120kW}{5.5\frac{kg}{s}*1.004\frac{kJ}{kgk}} \\T_{2}=837.2K

B) The isentropic efficiency (e) is defined as:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}

Where {h_{2s} is the isentropic enthalpy at the exit of the turbine for the isentropic process. The only missing in the last equation is that variable, because h_{2}-h_{1} can be obtained from the energy balance  \frac{W}{m}=h_{2}-h_{1}

h_{2}-h_{1}=\frac{-1120kW}{5.5\frac{kg}{s}}=-203.64\frac{kJ}{kg}

An entropy change for an ideal gas with  constant Cp is given by:

s_{2}-s_{1}=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})

You can review its deduction on van Wylen 6 Edition, section 8.10.

For the isentropic process the equation is:

0=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})\\Rln(\frac{P_{2}}{P_{1}})=Cpln(\frac{T_{2}}{T_{1}})

Applying logarithm properties:

ln((\frac{P_{2}}{P_{1}})^{R} )=ln((\frac{T_{2}}{T_{1}})^{Cp} )\\(\frac{P_{2}}{P_{1}})^{R}=(\frac{T_{2}}{T_{1}})^{Cp}\\(\frac{P_{2}}{P_{1}})^{R/Cp}=(\frac{T_{2}}{T_{1}})\\T_{2}=T_{1}(\frac{P_{2}}{P_{1}})^{R/Cp}

Then,

T_{2}=1040K(\frac{120kPa}{278kPa})^{0.287/1.004}=817.96K

So, now it is possible to calculate h_{2s}-h_{1}:

h_{2s}-h_{1}}=Cp(T_{2s}-T_{1}})=1.004\frac{kJ}{kgK}*(817.96K-1040K)=-222.92\frac{kJ}{kg}

Finally, the efficiency can be calculated:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}=\frac{-203.64\frac{kJ}{kg}}{-222.92\frac{kJ}{kg}}\\e=0.913=91.3 %

4 0
3 years ago
Which term represents an object that has a round or oval base and is connected at every point by lines at a corresponding point
raketka [301]

Answer:

it is a polyhedron

Explanation:

if I am wrong I am sorry

8 0
2 years ago
Read 2 more answers
Energy transfer in mechanical systems: During steady-state operation, a mechanical gearbox receives 70 KW of input power through
Degger [83]

Answer:

Heat transfer rate(Q)= 1.197kW

Power output(W)=68.803kW

3 0
2 years ago
Differnence between boat and ship​
Blababa [14]

Answer:

a ship is a large vessel intended for oceangoing or at least deep-water transport, and a boat is anything else." Basically, a ship can carry a boat, but a boat cannot carry a ship

5 0
3 years ago
Read 2 more answers
Other questions:
  • What entrepreneurial activities do you know?are you capable of doing entrepreneurial activities
    15·1 answer
  • Refrigerant-134a enters a diffuser steadily as saturated vapor at 600 kPa with a velocity of 160 m/s, and it leaves at 700 kPa a
    10·2 answers
  • Which statement is true for the relay logic diagram shown below?
    9·1 answer
  • The slope of a moment diagram is the load. a)-True b)-False
    8·1 answer
  • Name the ferrous metal that most workshop tools are made from??
    12·2 answers
  • Tech A says that coolant circulates through some intake manifolds to help warm them up. Tech B says that some intake manifolds u
    13·1 answer
  • A control system that is used in elevator system
    7·1 answer
  • Which of the following allows team members to visualize a design model from a variety of perspectives?
    12·2 answers
  • “In a trusting relationship, confidential information is kept confidential.” Explain what the limits to confidentiality are and
    14·1 answer
  • Stress that acts in the plane of a cut section, rather than at right angles to the section is called:_______
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!