Answer:
The steady-state temperature difference is 2.42 K
Explanation:
Rate of heat transfer = kA∆T/t
Rate of heat transfer = 6 W
k is the heat transfer coefficient = 152 W/m.K
A is the area of the square silicon = width^2 = (7/1000)^2 = 4.9×10^-5 m^2
t is the thickness of the silicon = 3 mm = 3/1000 = 0.003 m
6 = 152×4.9×10^-5×∆T/0.003
∆T = 6×0.003/152×4.9×10^-5 = 2.42 K
Answer:it forms a molten mold that makes it hard to be able to smash something into it then make something like a key
Explanation:
Answer:
modulus of elasticity for the nonporous material is 340.74 GPa
Explanation:
given data
porosity = 303 GPa
modulus of elasticity = 6.0
solution
we get here modulus of elasticity for the nonporous material Eo that is
E = Eo (1 - 1.9P + 0.9P²) ...............1
put here value and we get Eo
303 = Eo ( 1 - 1.9(0.06) + 0.9(0.06)² )
solve it we get
Eo = 340.74 GPa
Answer:
σ = 391.2 MPa
Explanation:
The relation between true stress and true strain is given as:
σ = k εⁿ
where,
σ = true stress = 365 MPa
k = constant
ε = true strain = Change in Length/Original Length
ε = (61.8 - 54.8)/54.8 = 0.128
n = strain hardening exponent = 0.2
Therefore,
365 MPa = K (0.128)^0.2
K = 365 MPa/(0.128)^0.2
k = 550.62 MPa
Now, we have the following data:
σ = true stress = ?
k = constant = 550.62 MPa
ε = true strain = Change in Length/Original Length
ε = (64.7 - 54.8)/54.8 = 0.181
n = strain hardening exponent = 0.2
Therefore,
σ = (550.62 MPa)(0.181)^0.2
<u>σ = 391.2 MPa</u>