1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vilka [71]
3 years ago
6

Free goldenn points 500 real no jk first come first serve

Engineering
2 answers:
vova2212 [387]3 years ago
8 0

Explanation:

yeyeyyeyeyeyyeyeyeyeyeyeyyeyeyeydydhdjjfjfjfkfkfkkd

blagie [28]3 years ago
7 0

Answer:

ok mann Thank you so much but this is 50 points not 500 points.....

You might be interested in
You are working as an electrical technician. One day, out in the field, you need an inductor but cannot find one. Looking in you
telo118 [61]

Answer:

a) the inductance of the coil is 6 mH

b) the emf generated in the coil is 18 mV  

Explanation:

Given the data in the question;

N = 570 turns

diameter of tube d = 8.10 cm = 0.081 m

length of the wire-wrapped portion l =  35.0 cm = 0.35 m

a) the inductance of the coil (in mH)

inductance of solenoid

L = N²μA / l

A = πd²/4  

so

L = N²μ(πd²/4) / l

L = N²μ(πd²) / 4l

we know that μ = 4π × 10⁻⁷ TmA⁻¹

we substitute

L = [(570)² × 4π × 10⁻⁷× ( π × (0.081)² )] / 4(0.35)

L =  0.00841549 / 1.4

L = 6 × 10⁻³ H    

L = 6 × 10⁻³ × 1000 mH

L = 6 mH

Therefore, the inductance of the coil is 6 mH

b)

Emf ( ∈ ) = L di/dt

given that; di/dt = 3.00 A/sec

{∴ di = 3 - 0 = 3 and dt = 1 sec}

Emf ( ∈ ) = L di/dt

we substitute

⇒ 6 × 10⁻³ ( 3/1 )

= 18 × 10⁻³ V

= 18 × 10⁻³ × 1000

= 18 mV  

Therefore, the emf generated in the coil is 18 mV  

7 0
3 years ago
A lake has a carrying capacity of 10,000 fish. At the current level of fishing, 2,000 fish per year are taken with the catch uni
arlik [135]

Answer:

The population size would be p' = 5000

The yield would be    MaxYield = 2082 \ fishes \ per \ year

Explanation:

So in this problem we are going to be examining the application of a  population dynamics a fishing pond and stock fishing and objective would be to obtain the maximum sustainable yield and and the population of the fish at the obtained maximum sustainable yield,  so basically we would be applying an engineering solution to fishing

 

    So the current  yield which is mathematically represented as

                               \frac{dN}{dt} =   \frac{2000}{1 \ year }

 Where dN is the change in the number of fish

            and dt is the change in time

So in order to obtain the solution we need to obtain the  rate of growth

    For this we would be making use of the growth rate equation which is

                                      r = \frac{[\frac{dN}{dt}] }{N[1-\frac{N}{K} ]}

  Where N is the population of the fish which is given as 4,000 fishes

          and  K is the carrying capacity which is given as 10,000 fishes

             r is the growth rate

        Substituting these values into the equation

                              r = \frac{[\frac{2000}{year}] }{4000[1-\frac{4000}{10,000} ]}  =0.833

The maximum sustainable yield would be dependent on the growth rate an the carrying capacity and this mathematically represented as

                      Max Yield  = \frac{rK}{4} = \frac{(10,000)(0.833)}{4} = 2082 \ fishes \ per \ year

So since the maximum sustainable yield is 2082 then the the population need to be higher than 4,000 so in order to ensure a that this maximum yield the population size denoted by p' would be

                          p' = \frac{K}{2}  = \frac{10,000}{2}  = 5000\ fishes          

7 0
3 years ago
Read 2 more answers
What happens to the duty cycle for a GMAW Gun when 75Ar/25COzgas
skad [1K]

So what happens is the host will not kill the y no se que hacer para no one can see it in

6 0
2 years ago
Discoloration on walls, work surfaces, ceilings, walls, and pipes may indicate a leak that is causing you to waste raw materials
suter [353]

Answer:

True :)

Explanation:

If this is a true or false question.

6 0
2 years ago
2. Determine the surface area of a primary settling tank sized to handle a maximum hourly flow of 0.570 m3/s at an overflow rate
Hitman42 [59]

Answer:

The surface area of the primary settling tank is 0.0095 m^2.

The effective theoretical detention time is 0.05 s.

Explanation:

The surface area of the tank is calculated by dividing the volumetric flow rate by the overflow rate.

Volumetric flow rate = 0.570 m^3/s

Overflow rate = 60 m/s

Surface area = 0.570 m^3/s ÷ 60 m/s = 0.0095 m^2

Detention time is calculated by dividing the volume of the tank by the its volumetric flow rate

Volume of the tank = surface area × depth = 0.0095 m^2 × 3 m = 0.0285 m^3

Detention time = 0.0285 m^3 ÷ 0.570 m^3/s = 0.05 s

7 0
3 years ago
Read 2 more answers
Other questions:
  • Use the convolutional integral to find the response of an LTI system with impulse response ℎ(????) and input x(????). Sketch the
    8·1 answer
  • Major processing methods for fiberglass composited include which of the following? Mark all that apply) a)- Open Mold b)- Closed
    10·1 answer
  • A system consists of N very weakly interacting particles at a temperature T sufficiently high so that classical statistical mech
    9·1 answer
  • Why is it important to stop climate change?
    15·2 answers
  • ANSWER FAST PLEASE!!! WILL MARK BRAINLIEST!!!!!!
    10·2 answers
  • A car generator turns at 400 rpm (revolutions per minute) when the engine is idling. It has a rectangular coil with 300 turns of
    7·1 answer
  • GMA MIG weiding is a
    7·1 answer
  • For the floor plan shown, if a = sm b= 8m, specify type of Load on Beam AHS<br> D<br> B В
    10·1 answer
  • Advanced manufacturing does NOT serve the transportation, communications, or medical industries. Is this statement TRUE or FALSE
    11·2 answers
  • Compare and contrast mechanical properties of plastics, metals and ceramics.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!