Answer:


Explanation:
= Velocity of car = 65 mph = 
= Density of air = 



From Bernoulli's law we have

The maximum pressure on the girl's hand is 
Now
= 200 mph = 

The maximum pressure on the girl's hand is 
Answer:
a)We know that acceleration a=dv/dt
So dv/dt=kt^2
dv=kt^2dt
Integrating we get
v(t)=kt^3/3+C
Puttin t=0
-8=C
Putting t=2
8=8k/3-8
k=48/8
k=6
Answer:
The value of critical length = 3.46 mm
The value of volume of fraction of fibers = 0.43
Explanation:
Given data
= 800 M pa
D = 0.017 mm
L = 2.3 mm
= 5500 M pa
= 18 M pa
= 13.5 M pa
(a) Critical fiber length is given by

Put all the values in above equation we get

mm
This is the value of critical length.
(b).Since this critical length is greater than fiber length Than the volume fraction of fibers is given by

Put all the values in above formula we get

= 0.43
This is the value of volume of fraction of fibers.
Answer:
Daily from the combustion chamber of a wood-burning heater.
<h3>
Explanation:</h3>
- As a wood stove heats up, it radiates heat through the walls and top of the stove
- This radiant heat warms the immediate area and can be carried into other parts of the home via the home's natural airflow.
- Electric or convection-powered fans can help circulate this heat to warm a larger area.
To learn more about it, refer
to brainly.com/question/23275071
#SPJ4
Answer:The move from hubs (shared networks) to switched networks was a big improvement. Control over collisions, increased throughput, and the additional features offered by switches all provide ample incentive to upgrade infrastructure. But Layer 2 switched topologies are not without their difficulties. Extensive flat topologies can create congested broadcast domains and can involve compromises with security, redundancy, and load balancing. These issues can be mitigated through the use of virtual local area networks, or VLANs. This chapter provides the structure and operation of VLANs as standardized in IEEE 802.1Q. This discussion will include trunking methods used for interconnecting devices on VLANs.
Problem: Big Broadcast Domains
With any single shared media LAN segment, transmissions propagate through the entire segment. As traffic activity increases, more collisions occur and transmitting nodes must back off and wait before attempting the transmission again. While the collision is cleared, other nodes must also wait, further increasing congestion on the LAN segment.
The left side of Figure 4-1 depicts a small network in which PC 2 and PC 4 attempt transmissions at the same time. The frames propagate away from the computers, eventually colliding with each other somewhere in between the two nodes as shown on the right. The increased voltage and power then propagate away from the scene of the collision. Note that the collision does not continue past the switches on either end. These are the boundaries of the collision domain. This is one of the primary reasons for switches replacing hubs. Hubs (and access points) simply do not scale well as network traffic increases.