Answer:
The correct answer is:
(a) 84.240 kg
(b) 24.038 m
Explanation:
The given values are:
Force,
F = 81.0 N
Distance,
S = 13.0 m
Time,
t = 5.20 s
As we know,
The acceleration of mass will be:
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
⇒ 
(a)
The mass of the block will be:
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
(b)
The final velocity after a given time i.e.,
t = 5.00 s
⇒ 
On substituting the values, we get
⇒ 
⇒ 
In time, t = 5.00 s
The distance moved by the block will be:
⇒ 
On putting the values, we get
⇒ 
⇒ 
The BRUSH <span>In electric motors and electric generators is responsible for transferring current from the power source to the commutator or from the slip rings to where the electricity is needed</span>
Answer:
option (c) - 10 j
Explanation:
F = (6 i + 4 j - 2 k) N
r1 = (1.5, 3, -4.5) m = (1.5 i + 3j - 4.5 k) m
r2 = (4, -2.5, - 3) m = (4 i - 2.5 j - 3 k) m
displacement, r = r2 - r1 = ( 2.5 i - 5.5 j + 1.5 k) m
Work done is defined as the dot product of force vector and teh displacement vector.

W = (6 i + 4 j - 2 k) . ( 2.5 i - 5.5 j + 1.5 k)
W = 15 - 22 - 3 = - 10 J
The magnitude of their resultant vector is 4.6 meters/seconds
Since we are to add the velocity vectors in order to find the magnitude of their resultant vector.
Hence:
Resultant vector magnitude=5.8 meters/seconds + (1.2 meters/seconds)
Resultant vector magnitude=5.8 meters/seconds-1.2 meters/seconds
Resultant vector magnitude 4.6 meters/seconds
Inconclusion The magnitude of their resultant vector is 4.6 meters/seconds
Learn more here:
brainly.com/question/11134601
Answer:
(a) 6.283 Wb (b) 69.11 Wb (c) I = 0.628 A
Explanation:
Given that,
The diameter of the loop, d = 40 cm
Radius, r = 20 cm
Initial magnetic field, B = 5 mT
Final magnetic field, B' = 55 mT
Initial magnetic flux,

Final magnetic flux,

Due to change in magnetic field an emf will be generated in the loop. It is given by :

Let I be the current in the loop. We can find it using Ohm's law such that,

Hence, this is the required solution.