The buoyant force must be greater than water.
Answer:
answer is option (c) child labour
Answer:
-2.26×10^-4 radians
Explanation:
The solution involves a right angle triangle
Length is z while the horizontal is the height x
X^2+ 100^2=z^2
Taking the derivatives
2x(dx/dt)=Z^2(dz/dt)
Specific moments = Z= 200 ,X= 100sqrt3 and dx/dt= 11
dz/dt= 1100sqrt3/200 = 9.53
Sin a= 100/a
Taking derivatives in terms of t
Cos a(da/dt)=100/z^2 dz/dt
a= 30°
Cos (30°)da/dt= (-100/40000×9.5)
a= -2.26×10^-4radians
Answer:
Explanation:
If the volume of a sample of gas is reduced at constant temperature, the average velocity of the molecules increases, the average force of an individual collision increases, and the average number of collisions with the wall, per unit area, per second increases.
As volume is reduced, the gas molecules come closer together, which increases the number of collisions between them and their collisions with the container walls. Also, since the distance traveled by each molecule between successive collision decreases, the molecule velocity doesn't decrease much within collisions as a result of which, the average velocity is higher compared to when the gas is stored in a larger volume. Finally, due to constant collisions, the direction of molecule travel changes rapidly owing to which the acceleration of molecules increases.