(tanθ + cotθ)² = sec²θ + csc²θ
<u>Expand left side</u>: tan²θ + 2tanθcotθ + cot²θ
<u>Evaluate middle term</u>: 2tanθcotθ =
= 2
⇒ tan²θ + 2+ cot²θ
= tan²θ + 1 + 1 + cot²θ
<u>Apply trig identity:</u> tan²θ + 1 = sec²θ
⇒ sec²θ + 1 + cot²θ
<u>Apply trig identity:</u> 1 + cot²θ = csc²θ
⇒ sec²θ + csc²θ
Left side equals Right side so equation is verified
Unlike terms displays terms which are not the same. x+2y would be the answer.
(Простите, пожалуйста, мой английский. Русский не мой родной язык. Надеюсь, у вас есть способ перевести это решение. Если нет, возможно, прилагаемое изображение объяснит достаточно.)
Use the shell method. Each shell has a height of 3 - 3/4 <em>y</em> ², radius <em>y</em>, and thickness ∆<em>y</em>, thus contributing an area of 2<em>π</em> <em>y</em> (3 - 3/4 <em>y</em> ²). The total volume of the solid is going to be the sum of infinitely many such shells with 0 ≤ <em>y</em> ≤ 2, thus given by the integral

Or use the disk method. (In the attachment, assume the height is very small.) Each disk has a radius of √(4/3 <em>x</em>), thus contributing an area of <em>π</em> (√(4/3 <em>x</em>))² = 4<em>π</em>/3 <em>x</em>. The total volume of the solid is the sum of infinitely many such disks with 0 ≤ <em>x</em> ≤ 3, or by the integral

Using either method, the volume is 6<em>π</em> ≈ 18,85. I do not know why your textbook gives a solution of 90,43. Perhaps I've misunderstood what it is you're supposed to calculate? On the other hand, textbooks are known to have typographical errors from time to time...
That would be 12<x
Its not 12 > x because that means that 12 is greater than x which is the same thing as x < 12.
Hope it helps