<span>Acceleration of a passenger is centripetal acceleration, since the Ferris wheel is assumed at uniform speed:
a = omega^2*r
omega and r in terms of given data:
omega = 2*Pi/T
r = d/2
Thus:
a = 2*Pi^2*d/T^2
What forces cause this acceleration for the passenger, at either top or bottom?
At top (acceleration is downward):
Weight (m*g): downward
Normal force (Ntop): upward
Thus Newton's 2nd law reads:
m*g - Ntop = m*a
At top (acceleration is upward):
Weight (m*g): downward
Normal force (Nbottom): upward
Thus Newton's 2nd law reads:
Nbottom - m*g = m*a
Solve for normal forces in both cases. Normal force is apparent weight, the weight that the passenger thinks is her weight when measuring by any method in the gondola reference frame:
Ntop = m*(g - a)
Nbottom = m*(g + a)
Substitute a:
Ntop = m*(g - 2*Pi^2*d/T^2)
Nbottom = m*(g + 2*Pi^2*d/T^2)
We are interested in the ratio of weight (gondola reference frame weight to weight when on the ground):
Ntop/(m*g) = m*(g - 2*Pi^2*d/T^2)/(m*g)
Nbottom/(m*g) = m*(g + 2*Pi^2*d/T^2)/(m*g)
Simplify:
Ntop/(m*g) = 1 - 2*Pi^2*d/(g*T^2)
Nbottom/(m*g) = 1 + 2*Pi^2*d/(g*T^2)
Data:
d:=22 m; T:=12.5 sec; g:=9.8 N/kg;
Results:
Ntop/(m*g) = 71.64%...she feels "light"
Nbottom/(m*g) = 128.4%...she feels "heavy"</span>
Answer: answer is d
Step-by-step explanation: input in calculator or set both equal to y and then set them equal to each other
False because the factor tree for 61 is 1 and 61
Answer:
A campaign manager would like to show the distribution of individuals...
Step-by-step explanation:
goodness of fit can be used to compare observed and expected counts. The newspaper report would be the expected. The campaign manager's distribution is the expected.