Answer:
The correct option is;
∠AQS ≅ ∠BQS when AS = BS
Step-by-step explanation:
Given that AQ is equal to BQ. When AS is drawn congruent to BS, we have;
QS is congruent to SQ by reflective property
Therefore;
The three sides of triangle QAS are congruent to the three sides of triangle QBS, from which we have;
∠AQS and ∠BQS are corresponding angles, therefore;
∠AQS ≅∠BQS because corresponding angles of congruent triangles are also congruent.
We define the probability of a particular event occurring as:

What are the total number of possible outcomes for the rolling of two dice? The rolls - though performed at the same time - are <em>independent</em>, which means one roll has no effect on the other. There are six possible outcomes for the first die, and for <em>each </em>of those, there are six possible outcomes for the second, for a total of 6 x 6 = 36 possible rolls.
Now that we've found the number of possible outcomes, we need to find the number of <em>desired</em> outcomes. What are our desired outcomes in this problem? They are asking for all outcomes where there is <em>at least one 5 rolled</em>. It turns out, there are only 3:
(1) D1 - 5, D2 - Anything else, (2), D1 - Anything else, D2 - 5, and (3) D1 - 5, D2 - 5
So, we have

probability of rolling at least one 5.
156 divided by 4 is 39 So each side is 39
Zero pair is a pair of numbers whose sum is zero, used to illustrate addition and subtraction problems... with positive and negative integers.
e.g. +1 -1
I hope that this helps
:)