Answer:
Two forces that act in opposite directions produce a resultant force that is smaller than either individual force. To find the resultant force subtract the magnitude of the smaller force from the magnitude of the larger force. The direction of the resultant force is in the same direction as the larger force.
For each pair Independent variable and the dependent variable is -
a. How much gas is left in the gas tank vs. how far the car has traveled.
- Independent variable = how far the car has traveled
- dependent variable = How much gas is left in the gas tank
b. How much money you've spent vs. how much money is in your wallet.
- Independent variable = How much money you've spent
- dependent variable = how much money is in your wallet.
c. How far a toy car traveled vs. how much time went by
- Independent variable = how much time went by
- dependent variable = How far a toy car traveled
An independent variable in any experiment or research is a variable that is manipulated or changed in the experiment, this change leads to a direct effect on the dependent variable.
A dependent variable is a variable that is directly affected by the independent variable and it is the variable that is measured or tested in an experiment.
Thus,
a. How much gas is left in the gas tank vs. how far the car has traveled.
- Independent variable = how far the car has traveled
- dependent variable = How much gas is left in the gas tank
b. How much money you've spent vs. how much money is in your wallet.
- Independent variable = How much money you've spent
- dependent variable = how much money is in your wallet.
c. How far a toy car traveled vs. how much time went by
- Independent variable = how much time went by
- dependent variable = How far a toy car traveled
Learn more about dependent variables:
brainly.com/question/1670595:
Answer:
The motion is over-damped when λ^2 - w^2 > 0 or when
> 0.86
The motion is critically when λ^2 - w^2 = 0 or when
= 0.86
The motion is under-damped when λ^2 - w^2 < 0 or when
< 0.86
Explanation:
Using the newton second law
k is the spring constante
b positive damping constant
m mass attached
x(t) is the displacement from the equilibrium position

Converting units of weights in units of mass (equation of motion)

From hook's law we can calculate the spring constant k

If we put m and k into the DE, we get

Denoting the constants
2λ =
= 
λ = b/0.215

λ^2 - w^2 = 
This way,
The motion is over-damped when λ^2 - w^2 > 0 or when
> 0.86
The motion is critically when λ^2 - w^2 = 0 or when
= 0.86
The motion is under-damped when λ^2 - w^2 < 0 or when
< 0.86
Answer:
resultant force = (f1²+f2²)½
=(1.5²+2²)½
=(2.25+4)½
=(6.25)½
=2.5
Explanation:
okay this question seems easy. now if the 1.5 is vertically upwards so is that 2 is horizontally downwards hence as u say its 90 degrees thn it forms a right angled triangle.