Answer:
Only C is a function
Step-by-step explanation:
To test whether a graph is a function you use the vertical line test.
If you can place a vertical line anywhere on the plane (in the domain of the "function" to be tested) and it intersects the curve at more than one point, the curve is not a function.
We see with A, wherever we put the vertical line it intersects twice.
With B, it intersects infinitely many times.
C is a function because wherever we put the vertical line, it only intersects once.
D is a function because it intersects twice providing we do not put it on the "tip" of the parabola.
The mathematical reasoning behind this is that a function must be well-defined, that is it must send every x-value to one specific y-value. There can be no confusion about where the function's input is going. If you look at graph B and I ask you what is f(3)? Is it 1? 2? 3? ... Who knows, it's not well-defined and so it's not a function. However if I ask you about C, whichever input value for x I give you, you can tell me to which y-value it gets mapped/sent to.
Answer:
Step-by-step explanation:
You have 3 unknowns: a, b, and c. It's our job to find them algebraically. I'm going to start with the point where x = 0 and y = 7. You'll see why in a minute. Filling in the standard form of a quadratic
using (0, 7):
gives you that c = 7. We will use that value now when we write the next 2 equations. Now the point (-2, 19):
and
so
12 = 4a - 2b
Now for the next point (-1, 12):
and
so
5 = a - b
Now we have a system of equations (the 2 bold font equations) that we will solve by elimination:
12 = 4a - 2b
5 = a - b
Multiply the bottom equation by -4 to get a new system:
12 = 4a - 2b
-20 = -4a + 4b
Add those together to get rid of the a terms and end up with
-8 = 2b so
b = -4
Now we can sub in -4 for b to solve for a. I'm using the second bold type equation to do this:
5 = a - (-4) and
5 = a + 4 so
a = 1 and the equation for the quadratic function is
The "m" in y = mx + b is the <u>slope.</u>
It is the number of units a point goes up, down, left, or right each time. Making the line linear/straight.
"rise" is the the number of units you go up(+) or down(-), "run" is the number of units you go to the right
For example, if your slope is:
You are going up 1 unit, and to the right 2 units
3 or
You are going up 3 units, and to the right 1 unit
You are going down one unit, and to the right 2 units
-3 or
You are going down 3 units, and to the right 1 unit
First, you have to find the equation of the perpendicular bisector of this given line.
to do that, you need the slope of the perpendicular line and one point.
Step 1: find the slope of the given line segment. We have the two end points (10, 15) and (-20, 5), so the slope is m=(15-5)/(10-(-20))=1/3
the slope of the perpendicular line is the negative reciprocal of the slope of the given line, m=-3/1=-3
step 2: find the middle point: x=(-20+10)/2=-5, y=(15+5)/2=10 (-5, 10)
so the equation of the perpendicular line in point-slope form is (y-10)=-3(x+5)
now plug in all the given coordinates to the equation to see which pair fits:
(-8, 19): 19-10=9, -3(-8+5)=9, so yes, (-8, 19) is on the perpendicular line.
try the other pairs, you will find that (1,-8) and (-5, 10) fit the equation too. (-5,10) happens to be the midpoint.
Answer:
b
Step-by-step explanation:
100