Answer:
240 degrees
Step-by-step explanation:
Looking at the graph we can see that the first peak is at -30 degrees and the second peak is at 210 degrees.
210 - (-30) = 210 + 30 = 240
Answer:
The reason HIV attacks T cells are because T cells produce antibodies that kill HIV.
Step-by-step explanation:
Your white blood cells help to fight off infection, The reason HIV attacks T cells are because T cells produce antibodies that kill HIV. Its like a battle between the two. HIV wants to stay there and T cells are trying to get rid of it so T cells are HIV main target.
Answer:
(√6 - √2)/4
Step-by-step explanation:
cos30°cos45° - sin30°sin45°
= cos (30 + 45)°
= cos 75°
= (√6 - √2)/4
That means 1/8 times itself 2 times so
1/8 times 1/8=(1 times 1)/(8 times 8)=1/64
Answer:
![E(X)= n \int_{0}^1 x^n dx = n [\frac{1}{n+1}- \frac{0}{n+1}]=\frac{n}{n+1}](https://tex.z-dn.net/?f=E%28X%29%3D%20n%20%5Cint_%7B0%7D%5E1%20x%5En%20dx%20%3D%20n%20%5B%5Cfrac%7B1%7D%7Bn%2B1%7D-%20%5Cfrac%7B0%7D%7Bn%2B1%7D%5D%3D%5Cfrac%7Bn%7D%7Bn%2B1%7D)
Step-by-step explanation:
A uniform distribution, "sometimes also known as a rectangular distribution, is a distribution that has constant probability".
We need to take in count that our random variable just take values between 0 and 1 since is uniform distribution (0,1). The maximum of the finite set of elements in (0,1) needs to be present in (0,1).
If we select a value
we want this:

And we can express this like that:
for each possible i
We assume that the random variable
are independent and
from the definition of an uniform random variable between 0 and 1. So we can find the cumulative distribution like this:

And then cumulative distribution would be expressed like this:



For each value
we can find the dendity function like this:

So then we have the pdf defined, and given by:
and 0 for other case
And now we can find the expected value for the random variable X like this:

![E(X)= n \int_{0}^1 x^n dx = n [\frac{1}{n+1}- \frac{0}{n+1}]=\frac{n}{n+1}](https://tex.z-dn.net/?f=E%28X%29%3D%20n%20%5Cint_%7B0%7D%5E1%20x%5En%20dx%20%3D%20n%20%5B%5Cfrac%7B1%7D%7Bn%2B1%7D-%20%5Cfrac%7B0%7D%7Bn%2B1%7D%5D%3D%5Cfrac%7Bn%7D%7Bn%2B1%7D)