1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bogdan [553]
3 years ago
9

The mayor of a town has proposed a plan for the annexation of an adjoining community. A political study took a sample of 1000 vo

ters in the town and found that 54% of the residents favored annexation. Using the data, a political strategist wants to test the claim that the percentage of residents who favor annexation is more than 50%. Determine the P-value of the test statistic. Round your answer to four decimal places.
Mathematics
1 answer:
Georgia [21]3 years ago
7 0

Answer:

z=\frac{0.54 -0.5}{\sqrt{\frac{0.5(1-0.5)}{1000}}}=2.530  

p_v =P(z>2.530)=0.0057  

Step-by-step explanation:

Data given and notation

n=1000 represent the random sample taken

\hat p=0.54 estimated proportion of residents that favored the annexation

p_o=0.5 is the value that we want to test

z would represent the statistic (variable of interest)

p_v represent the p value (variable of interest)  

Concepts and formulas to use  

We need to conduct a hypothesis in order to test the claim that the true proportion is higher than 0.5:  

Null hypothesis:p \leq 0.5  

Alternative hypothesis:p > 0.5  

When we conduct a proportion test we need to use the z statistic, and the is given by:  

z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}} (1)  

The One-Sample Proportion Test is used to assess whether a population proportion \hat p is significantly different from a hypothesized value p_o.

Calculate the statistic  

Since we have all the info required we can replace in formula (1) like this:  

z=\frac{0.54 -0.5}{\sqrt{\frac{0.5(1-0.5)}{1000}}}=2.530  

Statistical decision  

It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.  

The next step would be calculate the p value for this test.  

Since is a right tailed test the p value would be:  

p_v =P(z>2.530)=0.0057  

You might be interested in
Sheila got 87% of the problem correct. Patrick got 91/100 correct. Who scored higher?
Zolol [24]

Answer:

Patrick scored higher

Step-by-step explanation:

Shelia percentage is 87%

Patrick percentage is 91%

3 0
3 years ago
What is the scale factor from ABC to DEF?​
ollegr [7]

Answer:

C

Step-by-step explanation:

The scale factor is the ratio of corresponding sides, image to original, so

scale factor = \frac{EF}{BC} = \frac{11}{66} = \frac{1}{6} → C

8 0
3 years ago
The drama club had a car wash as a fundraiser where they washed a total of 41 vehicles. Members washed
Dimas [21]

Answer:

<em>Solution: (26,15) </em>

<em> </em>

<em>Cars washed=26 </em>

<em> </em>

<em>Trucks washed=15</em>

Step-by-step explanation:

3 0
2 years ago
What is y=3x^2-2 in vertex form
Nata [24]
\bf \qquad \qquad \textit{parabola vertex form}&#10;\\\\\\&#10;y=a(x-{{ h}})^2+{{ k}}\\&#10;x=a(y-{{ k}})^2+{{ h}}\qquad\qquad  vertex\ ({{ h}},{{ k}})\\\\&#10;-----------------------------\\\\&#10;y=3x^2-2\iff y = 3(x-0)^2-2
3 0
3 years ago
usa el teorema de la altura para proponer como se podria construir un segmento cuya longitud sea media proporcional entre dos se
Mrac [35]
Usando el teorema de altura 

El teorema de altura relaciona la altura (h) de un triángulo rectángulo (ver figura) y los catetos de dos triángulos que son semejantes al anterior ABC, al trazar la altura (h) sobre la hipotenusa. De manera que e<span>n todo </span>triángulo rectángulo, la altura (h<span>) relativa a la </span>hipotenusa<span> es la </span>media geométrica<span> de las dos proyecciones de los </span>catetos<span> sobre la </span>hipotenusa<span> (</span>n<span> y </span>m<span>). Es decir, se cumple que:

</span>\frac{n}{h}= \frac{h}{m}

Dado que el problema establece <span>construir un segmento cuya longitud sea media proporcional entre dos segmentos de 4 y 9 cm, entonces, digamos que n = 4cm y m = 9cm tenmos que:

</span>\frac{4}{h}= \frac{h}{9}

De donde:

h= \sqrt{(4)(9)}=\sqrt{36}=6cm

¿Cómo se podria construir si los segmentos son de a cm y b cm?

Si los segmentos son de a y b cm entonces a y b son parámetros que pueden tomar cualquier valor positivo siempre que se cumpla que:

h= \sqrt{ab}

6 0
3 years ago
Other questions:
  • CD intersects AB at point G.if AE=BE which equation must be true?
    12·1 answer
  • A manufacturer has been selling 1000 television sets a week at $450 each. A market survey indicates that for each $10 rebate off
    11·1 answer
  • Clare volunteers at a local library during the summer. Her work includes putting labels on 750 books.
    8·1 answer
  • 6x - 5y = 11<br> y = 7x + 21<br><br> What is the correct answer to this problem?
    15·1 answer
  • Can someone help me with this problem
    7·2 answers
  • I need help the find the definition to these <br> PleaseHELP!!!!!
    10·2 answers
  • Triangle ABC is shown. The measure of the interior angle at point A is 29° and the exterior angle at point C is 82°.
    8·1 answer
  • The data set shows the depth of a scuba diver, in meters, relative to sea level. The depths were recorded at regular intervals o
    12·1 answer
  • HEEEEEEELLLLLLLLLLLLPPPPPPPPPPPPP
    15·2 answers
  • Plsss help I’ve done this so many times and keep failing
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!