Answer:
48.37514 kj
Explanation:
Given data:
Mass of water = 163 g
Initial temperature = 29°C
Final temperature = 100°C
Heat added = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Specific heat capacity of water is 4.18 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = Final temperature - initial temperature
ΔT = 100°C - 29°C
ΔT = 71°C
Q = 163 g × 4.18 j/g.°C × 71°C
Q = 48375.14 j
Joule to Kj conversion:
48375.14 /1000 = 48.37514 kj
Answer:
Explanation:
When a chemical change happens or chemical reaction happens something yields at reactants and something at products
Representing them is called chemical equation
Answer:
0.075
Explanation:
First obtain the mean of the measurement;
Mean = 10.15 + 9.95 + 9.99 + 10.02/4 = 10.03
Then obtain d^2= (mean-score)^2 for each score;
(10.15-10.03)^2 = 0.0144
(9.95-10.03)^2 = 0.0064
(9.99-10.03)^2 = 0.0016
(10.02-10.03)^2= 0.0001
∑d^2= 0.0144 + 0.0064 + 0.0016 + 0.0001
∑d^2= 0.0225
Variance = ∑d^2/N = 0.0225/4 = 0.005625
Standard deviation= √0.005625
Standard deviation= 0.075
Molecular is every element present in the compound eg C2H6, empirical is the smallest whole number ratio of elements in a compound so that would be CH3 as you divide by the highest common factor. Some compounds only have 1 formula if they are simple or have no common factors. Eg methane, CH4 is its molecular and empirical because its the simplest whole number ratio and includes every element in the molecule
Explanation:
The unequal sharing of electrons between the atoms and the unsymmetrical shape of the molecule means that a water molecule has two poles - a positive charge on the hydrogen pole (side) and a negative charge on the oxygen pole (side). We say that the water molecule is electrically polar.