Answer:
a) The pH of the solution is 12.13.
b) The pH of the solution is 12.17.
Explanation:
Ionic product of water =
![K_w=[H^+][OH^-]](https://tex.z-dn.net/?f=K_w%3D%5BH%5E%2B%5D%5BOH%5E-%5D)
![1.01\times 10^-{14}=[H^+][OH^-]](https://tex.z-dn.net/?f=1.01%5Ctimes%2010%5E-%7B14%7D%3D%5BH%5E%2B%5D%5BOH%5E-%5D)
Taking negative logarithm on both sides:
![-\log[1.01\times 10^-{14}]=(-\log [H^+])+(-\log [OH^-])](https://tex.z-dn.net/?f=-%5Clog%5B1.01%5Ctimes%2010%5E-%7B14%7D%5D%3D%28-%5Clog%20%5BH%5E%2B%5D%29%2B%28-%5Clog%20%5BOH%5E-%5D%29)
The pH is the negative logarithm of hydrogen ion concentration in solution.
The pOH is the negative logarithm of hydroxide ion concentration in solution.

a)
of NaOH.
Concentration of hydroxide ions:

So, ![[OH^-]=1\times [NaOH]=1\times 1.39\times 10^{-2} M=1.39\times 10^{-2} M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1%5Ctimes%20%5BNaOH%5D%3D1%5Ctimes%201.39%5Ctimes%2010%5E%7B-2%7D%20M%3D1.39%5Ctimes%2010%5E%7B-2%7D%20M)
![pOH=-\log[1.39\times 10^{-2} M]=1.86](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5B1.39%5Ctimes%2010%5E%7B-2%7D%20M%5D%3D1.86)


pH=13.99-1.86=12.13
b)
of NaOH.
Concentration of hydroxide ions:

So, ![[OH^-]=3\times [Al(OH)_3]=3\times 0.0051 M=0.0153 M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D3%5Ctimes%20%5BAl%28OH%29_3%5D%3D3%5Ctimes%200.0051%20M%3D0.0153%20M)
![pOH=-\log[0.0153 M]=1.82](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5B0.0153%20M%5D%3D1.82)


pH=13.99-1.82=12.17
Answer:
625=275
240=x
625x=275×240
625x=66000
x=66000/625
x=105 .6
Explanation:
If 625°C gives us 275KPa then 240°C will give us the the sum of 275×240 divided by 625
180 km/s V= 25
explanation: i had the same assignment
<span>The answer is 4. The molecules of each material entice each other over dispersion (London) intermolecular forces. Whether a substance is a solid, liquid, or gas hinge on the stability between the kinetic energies of the molecules and their intermolecular magnetisms. In fluorine, the electrons are firmly apprehended to the nuclei. The electrons have slight accidental to stroll to one side of the molecule, so the London dispersion powers are comparatively weak. As we go from fluorine to iodine, the electrons are far from the nuclei so the electron exhausts can more effortlessly misrepresent. The London dispersion forces developed to be increasingly stronger.</span>
The correct answer is gonna be C) A lithium cation ion is smaller
A lithium cation has lost its valence electrons, which causes the remaining electrons to be pulled in stronger by the positive charge in the nucleus. As they get closer to the nucleus, the overall size of the atom is decreased.