1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ruslelena [56]
4 years ago
11

See the attachments below.

Mathematics
1 answer:
Dimas [21]4 years ago
7 0

Answers:

a) L=6cm

b) A=\frac{3\pi}{2}

Step-by-step explanation:

a) The area of the sector of a circle A is given by:

A=\frac{rL}{2} (1)

and

A=\frac{r^{2}\theta}{2} (2)

Where:

A=27cm^{2}

r is the radius

L=\frac{4}{x}cm (3) is the length of arc

\theta=x is the angle in radians

In this case we have to find the value of L. So, let's begin substituting the known values in (1):

27cm^{2}=\frac{r(\frac{4}{x}cm)}{2} (4)

Isolating x:

x=\frac{2r}{27cm} (5)

Substituting (5) in (3):

L=\frac{4}{\frac{2r}{27cm}}cm  (6)

Solving:

L=\frac{54cm^{2}}{r}  (7) At this point we have L, but we need to find the value of r in order to have the actual value of the length of arc.

Making (1)=(2):

A=\frac{rL}{2}=\frac{r^{2}x}{2} (8)

Isolating r:

r=\frac{L}{x} (9)

Substituting (7) and (5) in (9):

r=\frac{\frac{54cm^{2}}{r}}{\frac{2r}{27cm}} (10)

Finding r:

r=9cm (10) Now that we have the value of the radius, we can substitute it in (7) and finally find the value of the L

L=\frac{54cm^{2}}{9cm} (11)

L=6cm (12)

b) In this second case we have:

L=S is the length of arc

\theta=\frac{\pi}{3} is the angle in radians

r=3 the radius

We have to find the area of the sector A and we will use equations (1) and (2):

A=\frac{rL}{2}=\frac{r^{2}\theta}{2} (13)

\frac{3S}{2}=\frac{3^{2}(\frac{\pi}{3})}{2} (14)

3S=9\frac{\pi}{3} (15)

S=\pi (16)

Knowing A=\frac{3S}{2}:

A=\frac{3\pi}{2} This is the area of the sector of the circumference.

You might be interested in
Six machines, each working at the same constant rate, together can complete a certain job in 12 days. How many additional machin
Schach [20]

Answer:

3 machine

Step-by-step explanation:

It is given that 6 machine each working at the same rate can complete the work in 12 days

We the has to complete in 8 days

Let we need x extra machine to complete the work in 8 days

So total number of machines =x+6

Now according to man work day equation M_1D_1=M_2D_2

6\times 12=(x+6)\times 8

8x+48=72

8x=24

x=3 machine

7 0
4 years ago
What are rational numbers
Tema [17]
A rational number<span> is a </span>number<span> that can be written as a ratio.</span>
5 0
4 years ago
Read 2 more answers
What is the derivative of y=3tan(x)y=3 tan (x) ?
maw [93]
y=3tanx\\\\tanx=\frac{sinx}{cosx}\Rightarrow y=\frac{3sinx}{cosx}\\\\\\y'=\frac{(3sinx)'cosx-3sinx(cosx)'}{(cosx)^2}=\frac{3cosxcosx-3sinx(-sinx)}{cos^2x}=\frac{3cos^2x+3sin^2x}{cos^2x}\\\\=\frac{3(cos^2x+sin^2x)}{cos^2x}=\frac{3(1)}{cos^2x}=\frac{3}{cos^2x}\\\\-------------------\\\\sin^2x+cos^2x=1

6 0
3 years ago
Read 2 more answers
4x - 2y = 20<br> -8x - 3y = 16<br><br> Elimination with Multiplication
Alex

Answer:

Red

Step-by-step explanation:me need points

5 0
3 years ago
Read 2 more answers
2<br> .<br> 2<br> 12n = 42<br> NEED HELP ASAP⬆️
Anni [7]

Answer:

  6  

 —————

 n + 8

Step-by-step explanation:

Step by Step Solution:

More Icon

STEP

1

:

Equation at the end of step 1

 ((12•(n3))-(24•(n2)))       (12n-42)      

 —————————————————————•———————————————————

  (((4•(n2))-22n)+28)  ((6•(n3))+(24•3n2))  

STEP  

2

:

Equation at the end of step

2

:

 ((12•(n3))-(24•(n2)))      (12n-42)      

 —————————————————————•——————————————————

  (((4•(n2))-22n)+28)  ((2•3n3)+(24•3n2))  

STEP

3

:

            12n - 42  

Simplify   ——————————

           6n3 + 48n2

STEP

4

:

Pulling out like terms

4.1     Pull out like factors :

  12n - 42  =   6 • (2n - 7)  

STEP

5

:

Pulling out like terms

5.1     Pull out like factors :

  6n3 + 48n2  =   6n2 • (n + 8)  

Equation at the end of step

5

:

 ((12•(n3))-(24•(n2)))  (2n-7)  

 —————————————————————•————————

  (((4•(n2))-22n)+28)  n2•(n+8)

STEP  

6

:

Equation at the end of step

6

:

 ((12•(n3))-(24•(n2)))  (2n-7)  

 —————————————————————•————————

    ((22n2-22n)+28)    n2•(n+8)

STEP  

7

:

Equation at the end of step

7

:

 ((12•(n3))-(23•3n2))  (2n-7)  

 ————————————————————•————————

     (4n2-22n+28)     n2•(n+8)

STEP  

8

:

Equation at the end of step

8

:

 ((22•3n3) - (23•3n2))      (2n - 7)  

 ————————————————————— • ————————————

   (4n2 - 22n + 28)      n2 • (n + 8)

STEP

9

:

             12n3 - 24n2  

Simplify   ——————————————

           4n2 - 22n + 28

STEP

10

:

Pulling out like terms

10.1     Pull out like factors :

  12n3 - 24n2  =   12n2 • (n - 2)  

STEP

11

:

Pulling out like terms

11.1     Pull out like factors :

  4n2 - 22n + 28  =   2 • (2n2 - 11n + 14)  

Trying to factor by splitting the middle term

11.2     Factoring  2n2 - 11n + 14  

The first term is,  2n2  its coefficient is  2 .

The middle term is,  -11n  its coefficient is  -11 .

The last term, "the constant", is  +14  

Step-1 : Multiply the coefficient of the first term by the constant   2 • 14 = 28  

Step-2 : Find two factors of  28  whose sum equals the coefficient of the middle term, which is   -11 .

     -28    +    -1    =    -29  

     -14    +    -2    =    -16  

     -7    +    -4    =    -11    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -7  and  -4  

                    2n2 - 7n - 4n - 14

Step-4 : Add up the first 2 terms, pulling out like factors :

                   n • (2n-7)

             Add up the last 2 terms, pulling out common factors :

                   2 • (2n-7)

Step-5 : Add up the four terms of step 4 :

                   (n-2)  •  (2n-7)

            Which is the desired factorization

Canceling Out :

11.3    Cancel out  (n-2)  which appears on both sides of the fraction line.

Equation at the end of step

11

:

   6n2      (2n - 7)  

 —————— • ————————————

 2n - 7   n2 • (n + 8)

STEP

12

:

Canceling Out

12.1    Cancel out  (2n-7)  which appears on both sides of the fraction line.

Canceling Out :

12.2    Canceling out n2 as it appears on both sides of the fraction line

Final result :

   6  

 —————

 n + 8

8 0
4 years ago
Other questions:
  • How do you solve 12d + 2 - 3d = 5
    5·2 answers
  • What two numbers add to 15 and multiply to negative 312?
    12·1 answer
  • 1- Find the surface area and volume of each solid figure.
    10·1 answer
  • What is the scale of the number 546,980,214?
    12·1 answer
  • What does 1/3 of (7+8) + 4 to the power of 2 - 2 equal
    13·2 answers
  • The endpoints of a line segment are G(1,7) and H(-3,11). Find the coordinates of the midpoint M.
    10·1 answer
  • Pythogorean theorem ​
    9·1 answer
  • Es - If a $100 bill is given to the cashier for the purchase of a family special, three beef brisket sandwiches, and one pulled
    11·2 answers
  • Three angles of a quadrilateral are 650<br> , 1000, 850<br> . Find the measure of <br> fourth angle​
    13·1 answer
  • SOMEONE PLEASE HELP. THIS IS DUE BY MIDNIGHT!
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!