Answer:
The probability that a randomly selected student has a score between 350 and 550 = 0.5867
Step-by-step explanation:
Mean
= 500
Standard deviation
= 110
Let X be the score of student in a standardized test
The probability that a randomly selected student has a score between 350 and 550 =
= ![P(\frac{ 350 - 500 }{110 }< \frac{ X - \nu }{\sigma }< \frac{ 550 - 500 }{110 } )](https://tex.z-dn.net/?f=P%28%5Cfrac%7B%20350%20-%20500%20%7D%7B110%20%7D%3C%20%5Cfrac%7B%20X%20-%20%5Cnu%20%7D%7B%5Csigma%20%20%7D%3C%20%5Cfrac%7B%20%20550%20-%20500%20%7D%7B110%20%7D%20%29)
=
Putting ![(Z =\frac{ X - \nu }{\sigma })](https://tex.z-dn.net/?f=%28Z%20%3D%5Cfrac%7B%20X%20-%20%5Cnu%20%7D%7B%5Csigma%20%20%7D%29)
= ![(Z< 0.45) - (Z< -1.36)](https://tex.z-dn.net/?f=%28Z%3C%200.45%29%20-%20%28Z%3C%20-1.36%29)
= 0.6736 - .0869 ( Using Z table )
= 0.5867
Answer:
Area in square kilometers equals ![12.126km^{2}](https://tex.z-dn.net/?f=12.126km%5E%7B2%7D)
Area in hectares equals 1212.6 hectares
Step-by-step explanation:
We know that area of rectangle is length times the breadth.
Using the given values we have
![Area=length\times breadth\\\\\therefore Area =4.7km\times 2.58km\\\\Area=12.126km^{2}](https://tex.z-dn.net/?f=Area%3Dlength%5Ctimes%20breadth%5C%5C%5C%5C%5Ctherefore%20Area%20%3D4.7km%5Ctimes%202.58km%5C%5C%5C%5CArea%3D12.126km%5E%7B2%7D)
Thus he bought land of area ![12.126km^{2}](https://tex.z-dn.net/?f=12.126km%5E%7B2%7D)
We know that 1 hectare =![0.01km^{2}](https://tex.z-dn.net/?f=0.01km%5E%7B2%7D)
Thus 12.126
= 12.126/0.01 hectares
Area in hectares equals 1212.6 hectares
Answer:12
Step-by-step explanation:
I think it is b but wait till someone else answers to