Answer:
C. 65
Step-by-step explanation:
Compare to the standard form ...
ax² +bx +c
to find the values of a, b, c. They are ...
a=2, b=3, c=-7
The discriminant is ...
d = b² -4ac
d = (3)² -4(2)(-7) = 9 +56
d = 65 . . . . . . matches choice C
Answer:
A
Step-by-step explanation:
my
We want to find the greatest common factor of two given expressions.
The GCF is 15*a*b.
The two expressions are:
45*a^3*b^2 and 15*a*b
To find the greatest common factor, we can rewrite the first expression to get:
45*a^3*b^2 = (3*15)*(a^2*a)*(b*b)
Now remember that we can perform a multiplication in any order we want, so we can rearrange the factors to write this as:
(3*15)*(a^2*a)*(b*b) = (15*a*b)*(3*a^2*b)
Then we have:
45*a^3*b^2 = (15*a*b)*(3*a^2*b)
So we can see that 15*a*b is a factor of 45*a^3*b^2, then the GCF between 15*a*b and 45*a^3*b^2 is just 15*a*b.
If you want to learn more, you can read:
brainly.com/question/1986258