The correct answer is (b.) y/x hertz. That is because the formula to get the frequency is f = v / w. The following values (v=y meters / second; wavelength = x meters) must be substituted to the equation, which leaves you y/x hertz.
Answer:
a) v = √(v₀² + 2g h), b) Δt = 2 v₀ / g
Explanation:
For this exercise we will use the mathematical expressions, where the directional towards at is considered positive.
The velocity of each ball is
ball 1. thrown upwards vo is positive
v² = v₀² - 2 g (y-y₀)
in this case the height y is zero and the height i = h
v = √(v₀² + 2g h)
ball 2 thrown down, in this case vo is negative
v = √(v₀² + 2g h)
The times to get to the ground
ball 1
v = v₀ - g t₁
t₁ =
ball 2
v = -v₀ - g t₂
t₂ = - \frac{v_{o} + v }{ g}
From the previous part, we saw that the speeds of the two balls are the same when reaching the ground, so the time difference is
Δt = t₂ -t₁
Δt =
Δt = 2 v₀ / g
Answer:
<h2>workdone = force × distance </h2><h2>236J = 18.9cos(o) × 24.4</h2><h2>236/24.4 = 18.9cos(o)</h2><h2>(0.5117)cos^-1 = (o)</h2><h2><u>59.21°</u></h2>
Answer:
Option C. is correct
Explanation:
The magnetic field is the area around a magnet in which there is magnetic force. When an electric current flows through a wire a magnetic field is created. A single wire does not produce a strong magnetic field. So, to increase the power of the magnetic field, increase the number of coils in the wire.
A b c d e f g h i j k l m