1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetlanka [38]
2 years ago
15

What is the necessary conditions for the production of sound?

Physics
1 answer:
TEA [102]2 years ago
8 0

*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆**☆*――*☆*――*☆*――*☆

Answer: Something that's vibrating, and you also need medium for those vibrations to start in.

I hope this helped!

<!> Brainliest is appreciated! <!>

- Zack Slocum

*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆**☆*――*☆*――*☆*――*☆

You might be interested in
How many electrons are depicted in the electron dot diagram of an electrically neutral nitrogen atom? A. two B. six C. eight D.
goldenfox [79]

Answer is D - five.


<em>Explanation;</em>


- Electron dot diagrams show the valence electrons around the element by using dots.


- Valence electrons are the electrons which are in outermost shell of the atom.


-The atomic number of the N atom is 7.

      Atomic number = number of protons = 7

  If the atom is neutral,

      number of protons = number of electrons.


  Hence, N atom has 7 electrons.


- The electron configuration is 1s² 2s² 2p³.


Hence, N atom has 2 + 3 = 5 valence electrons. So, five electrons are represented in electron dot diagram of N.

4 0
3 years ago
Read 2 more answers
A 1300 kg steel beam is supported by two ropes. (Figure
Dmitriy789 [7]

Relative to the positive horizontal axis, rope 1 makes an angle of 90 + 20 = 110 degrees, while rope 2 makes an angle of 90 - 30 = 60 degrees.

By Newton's second law,

  • the net horizontal force acting on the beam is

R_1 \cos(110^\circ) + R_2 \cos(60^\circ) = 0

where R_1,R_2 are the magnitudes of the tensions in ropes 1 and 2, respectively;

  • the net vertical force acting on the beam is

R_1 \sin(110^\circ) + R_2 \sin(60^\circ) - mg = 0

where m=1300\,\rm kg and g=9.8\frac{\rm m}{\mathrm s^2}.

Eliminating R_2, we have

\sin(60^\circ) \bigg(R_1 \cos(110^\circ) + R_2 \cos(60^\circ)\bigg) - \cos(60^\circ) \bigg(R_1 \sin(110^\circ) + R_2 \sin(60^\circ)\bigg) = 0\sin(60^\circ) - mg\cos(60^\circ)

R_1 \bigg(\sin(60^\circ) \cos(110^\circ) - \cos(60^\circ) \sin(110^\circ)\bigg) = -\dfrac{mg}2

R_1 \sin(60^\circ - 110^\circ) = -\dfrac{mg}2

-R_1 \sin(50^\circ) = -\dfrac{mg}2

R_1 = \dfrac{mg}{2\sin(50^\circ)} \approx \boxed{8300\,\rm N}

Solve for R_2.

\dfrac{mg\cos(110^\circ)}{2\sin(50^\circ)} + R_2 \cos(60^\circ) = 0

\dfrac{R_2}2 = -mg\cot(110^\circ)

R_2 = -2mg\cot(110^\circ) \approx \boxed{9300\,\rm N}

8 0
1 year ago
Which planets are closets to the sun?
damaskus [11]

The plant that is closest to the sun is murcury. Then it is venus, then earth, and then mars. Then it is jupiter, then saturn, then uranus, then neptune.

5 0
3 years ago
Read 2 more answers
A coaxial cable consists of a solid inner cylindrical conductor of radius 2 mm and an outer cylindrical shell of inner radius 3
4vir4ik [10]

Answer:

d) 1.2 mT

Explanation:

Here we want to find the magnitude of the magnetic field at a distance of 2.5 mm from the axis of the coaxial cable.

First of all, we observe that:

- The internal cylindrical conductor of radius 2 mm can be treated as a conductive wire placed at the axis of the cable, since here we are analyzing the field outside the radius of the conductor. The current flowing in this conductor is

I = 15 A

- The external conductor, of radius between 3 mm and 3.5 mm, does not contribute to the field at r = 2.5 mm, since 2.5 mm is situated before the inner shell of the conductor (at 3 mm).

Therefore, the net magnetic field is just given by the internal conductor. The magnetic field produced by a wire is given by

B=\frac{\mu_0 I}{2\pi r}

where

\mu_0 is the vacuum permeability

I = 15 A is the current in the conductor

r = 2.5 mm = 0.0025 m is the distance from the axis at which we want to calculate the field

Substituting, we find:

B=\frac{(4\pi\cdot 10^{-7})(15)}{2\pi(0.0025)}=1.2\cdot 10^{-3}T = 1.2 mT

8 0
3 years ago
What is the centripetal acceleration of the earth as it travels around the sun when Earth has an orbital radius of 1.5 x 10^11 m
masya89 [10]

Answer: 0.0058 m/s^{2}

Explanation:

Centripetal acceleration a_{C} is calculated by the following equation:

a_{C}=\frac{V^{2}}{r}

Where:

V=29.7 \frac{km}{h} \frac{1000 m}{1 km}=29700 m/s is the Earth's orbital speed

r=1.5(10)^{11} m is the orbital radius

a_{C}=\frac{(29700 m/s)^{2}}{1.5(10)^{11} m}

a_{C}=0.0058 m/s^{2}

4 0
3 years ago
Other questions:
  • The quantity of charge Q in coulombs (C) that has passed through a point in a wire up to time t (measured in seconds) is given b
    14·1 answer
  • Someone please help me
    11·1 answer
  • What is a superpositional principle
    7·2 answers
  • PLEASE HELP Which landforms can be associated with the three types of plate boundaries?
    7·1 answer
  • calculate the force between two objects that have masses of 20 kg and 100 kg separated by a distance of 2.6 m
    15·1 answer
  • What was the measurement of the wavelength and amplitude respectively?
    7·1 answer
  • Please help !!!!!!!!!!
    15·1 answer
  • Current is the movement of positive charges called electrons.
    12·2 answers
  • An 8 Newton wooden block slides across a horizontal wooden floor at constant velocity. What is the magi notice of the force of k
    7·1 answer
  • How much energy was released if rocket hydrogen fuel was burnt ?​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!