Since the new distance is 3 times the old distance,
the new force is (1/3²) = 1/9th of the old force.
That's kind-of Choice-D, but I really don't like the way choice-D is worded.
"9 times smaller" is really pretty meaningless.
Answer:
The velocity of the truck after the collision is 20.93 m/s
Explanation:
It is given that,
Mass of car, m₁ = 1200 kg
Initial velocity of the car, 
Mass of truck, m₂ = 9000 kg
Initial velocity of the truck, 
After the collision, velocity of the car, 
Let
is the velocity of the truck immediately after the collision. The momentum of the system remains conversed.




So, the velocity of the truck after the collision is 20.93 m/s. Hence, this is the required solution.
The lines can be traced out with a compass. The needle is like a permanent magnet and the north indicator is the north end of a magnet.
Answer:
High energy waves have high amplitudes
Explanation:
The sound is perceived as louder if the amplitude increases, and softer if the amplitude decreases. ... The amplitude of a wave is related to the amount of energy it carries. A high amplitude wave carries a large amount of energy; a low amplitude wave carries a small amount of energy
Answer:
The force exerted by the biceps is 143.8 kgf.
Explanation:
To calculate the force exerted by the biceps, we calculate the momentum in the elbow.
This momentum has to be zero so that her forearm remains motionless.
Being:
W: mass weight (6.15 kg)
d_W= distance to the mass weight (0.425 m)
A: weight of the forearm (2.25 kg)
d_A: distance to the center of mass of the forearm (0.425/2=0.2125 m)
H: force exerted by the biceps
d_H: distance to the point of connection of the biceps (0.0215 m)
The momemtum is:

The force exerted by the biceps is 143.8 kgf.