The formula for the area of a trapezoid is a=1/2(b1+b2)h
So 10*5 = 50 *4 = 200 then divided by 2 is 100 so the answer is 100
Answer:
- (x-4.5)^2 +(y +5)^2 = 30.25
- x = (1/8)y^2 +(1/2)y +(1/2)
- y^2/36 -x^2/64 = 1
- x^2/16 +y^2/25 = 1
Step-by-step explanation:
1. Complete the square for both x and y by adding a constant equal to the square of half the linear term coefficient. Subtract 15, and rearrange to standard form.
(x^2 -9x +4.5^2) +(y^2 +10y +5^2) = 4.5^2 +5^2 -15
(x -4.5)^2 +(y +5)^2 = 30.25 . . . . . write in standard form
Important features: center = (4.5, -5); radius = 5.5.
__
2. To put this in the form x=f(y), we need to add 8x, then divide by 8.
x = (1/8)y^2 +(1/2)y +(1/2)
Important features: vertex = (0, -2); focus = (2, -2); horizontal compression factor = 1/8.
__
3. We want y^2/a^2 -x^2/b^2 = 1 with a=36 and b=(36/(3/4)^2) = 64:
y^2/36 -x^2/64 = 1
__
4. In the form below, "a" is the semi-axis in the x-direction. Here, that is 8/2 = 4. "b" is the semi-axis in the y-direction, which is 5 in this case. We want x^2/a^2 +y^2/b^2 = 1 with a=4 and b=5.
x^2/16 +b^2/25 = 1
_____
The first attachment shows the circle and parabola; the second shows the hyperbola and ellipse.
Answer: The volume of the solid is 324 cm³
Step-by-step explanation:
Formula for determining the volume if a cube is s³
Where s represents the length of each side of the cube.
From the information given, s = 6 cm
Volume = 6³ = 216 cm³
The formula for determining the volume of the square base pyramid is expressed as
Volume = Area × height × 1/3
From the information given,
Length of square base = 6 cm
Height = 6 cm
Area of square base = 6² = 36 cm²
Volume of square base pyramid
= 36 × 6 × 1/3 = 108 cm³
The volume of the solid would be the sum of the volume of the cube and the volume of the square base pyramid. It becomes
216 + 108 = 324 cm³
Answer: $21.25
Step-by-step explanation:
0.85 x 25
Given:
A figure of combination of hemisphere, cylinder and cone.
Radius of hemisphere, cylinder and cone = 6 units.
Height of cylinder = 12 units
Slant height of cone = 10 units.
To find:
The volume of the given figure.
Solution:
Volume of hemisphere is:

Where, r is the radius of the hemisphere.



Volume of cylinder is:

Where, r is the radius of the cylinder and h is the height of the cylinder.



We know that,
[Pythagoras theorem]
Where, l is length, r is the radius and h is the height of the cone.

Volume of cone is:

Where, r is the radius of the cone and h is the height of the cone.



Now, the volume of the combined figure is:



Therefore, the volume of the given figure is 2110.08 cubic units.