Answer:
1/2
Step-by-step explanation:
The interior of the square is the region D = { (x,y) : 0 ≤ x,y ≤1 }. We call L(x,y) = 7y²x, M(x,y) = 8x²y. Since C is positively oriented, Green Theorem states that

Lets calculate the partial derivates of M and L, Mx and Ly. They can be computed by taking the derivate of the respective value, treating the other variable as a constant.
- Mx(x,y) = d/dx 8x²y = 16xy
- Ly(x,y) = d/dy 7y²x = 14xy
Thus, Mx(x,y) - Ly(x,y) = 2xy, and therefore, the line ntegral is equal to the double integral

We can compute the double integral by applying the Barrow's Rule, a primitive of 2xy under the variable x is x²y, thus the double integral can be computed as follows

We conclude that the line integral is 1/2
A. 2, 200, 2000
This is multiplying the number by 10 each time. In other words, just adding an extra zero to the end of it.
b. 340, 0.034
This one is moving the decimal place forward two places. 10^-2, so removing two zeros from the end of it until eventually you reach decimals and have to move the decimal forward twice, which is essentially what you're doing here.
c. 85700, 857, 0.857
In this one, you remove one zero from the end. You move the decimal forward once when you reach the decimals. This would be 10^-1
d. 444000, 4440000, 44400000
In this one, you multiply each one by 10. Add on a zero to each one.
e. 0.095, 9500000, 950000000
You multiply this one by 10^2, so the number increases.
Answer:
Step-by-step explanation:
x + 2 + 57 = 90
x + 59 = 90
x = 31°
x + 2 = 33°
Answer:
The midpoint of the x-intercepts of the function is (0, 0)
Step-by-step explanation:
Notice that since the function comes in factor form, we know that its roots (which are actually the intercepts the function has with the x-axis) are: x = 4 and x = -4 (the x-values for which the function renders zero).
These two points are equidistant from the origin of coordinates (0, 0), and therefore the midpoint of these x-intercepts is (0, 0).