Answer:
plug in -3 where any x is in the equation. I reccomend doing it in parenthesis just so things work out nicely
Step-by-step explanation:

The graph will cross at the coordinates (-2, 9)
<h3>How to solve equations?</h3>
y = 3x + 15
y = 3 - 3x
y = 3x + 15
Hence,
when x = 2
y = 3(2) + 15 = 21
when x = 0
y = 3(0) + 15 = 15
y = 3 - 3x
when x = 2
y = 3 - 3(2)
y = 3 - 6
y = -3
when x = 0
y = 3 - 3(0)
y = 3
Therefore, let's check if the equation will cross.
y = 3x + 15
y = 3 - 3x
using substitution,
3 - 3x = 3x + 15
3 - 15 = 3x + 3x
- 12 = 6x
x = -12 / 6
x = -2
y = 3 - 3(-2)
y = 3 + 6
y = 9
Therefore, the graph will cross at the coordinates (-2, 9)
learn more on equations here: brainly.com/question/19297665
#SPJ1
Answer:
The minimum score required for admission is 21.9.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

A university plans to admit students whose scores are in the top 40%. What is the minimum score required for admission?
Top 40%, so at least 100-40 = 60th percentile. The 60th percentile is the value of X when Z has a pvalue of 0.6. So it is X when Z = 0.255. So




The minimum score required for admission is 21.9.
y-intercept for x = 0.
Substitute x = 0 to the equation of the function:

I can't read that language but I'll guess it says write a second degree equation then solve for n when d=10.



Answer: n² - 3n - 20 = 0
That doesn't factor so there is no integer n solution.
That means there are no polygons with 10 diagonals.
