Answer:
A. The coefficient of variation is best used when comparing two data sets that use the same units of measure.
Step-by-step explanation:
The coefficient of variation (CV), is simply the standard deviation (itself a measure of variance or variation) relative to the mean of a distribution.
The coefficient of variation expresses a random variable’s variability in percentage terms. Therefore it is possible, through the coefficient of variation, to compare the variability of data across different samples, especially if the random variables are recorded in different units of measurement (such as cm, kg and minutes).
A coefficient of variation is always interpreted as a percentage. <u>Mathematical representation is:</u>

The coefficient of variation is best used when comparing two data sets that use the same units of measure.
Hence, the option (A) is the correct option.
Answer: It has one solution. The solution is (x,y) = (-4,-3)
Add up the equations doing so straight down
x + -x = 0x = 0 so the x terms go away
2y + 2y = 4y
-10 + (-2) = -12
We end up with 4y = -12 so y = -3 after you divide both sides by 4. Use this y value to find the value of x
x+2y = -10
x + 2(-3) = -10
x - 6 = -10
x = -10+6
x = -4
The single solution is (x,y) = (-4,-3)
As a check, plug this solution into each equation to see if you get a true statement or not. Let's do so with the first equation
x+2y = -10
-4 + 2(-3) = -10
-4 - 6 = -10
-10 = -10 .... true
and then the second equation
-x+2y = -2
-(-4) + 2(-3) = -2
4 - 6 = -2
-2 = -2 .... true
both equations are true, so the solution is confirmed
Fourty and eight tenths as a decimals is 40.8. More than one pounds behind decimal is too much and a different number other than 8 is wrong. The answer is B: 40.8.
Using the binomial distribution, it is found that there is a 0.125 = 12.5% probability of observing exactly 3 tails.
<h3>What is the binomial distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem, considering 3 tosses of a fair coin, the parameters are n = 3 and p = 0.5.
The probability of 3 tails is P(X = 3), hence:


0.125 = 12.5% probability of observing exactly 3 tails.
More can be learned about the binomial distribution at brainly.com/question/24863377
Answer:
Check the attachment as solved.
brainliest please ;)