The answer is D. Effective collisions lead to chemical reactions!
Answer:
This question is incomplete
Explanation:
There are two major forms of energy; these are potential and kinetic energy. Kinetic energy is the energy present in moving options. Examples include mechanical and electrical energy.
The formula for kinetic energy is 1/2mv² where "m" is mass and "v" is velocity.
While potential energy is the energy present in stationary objects that can be put to use in future. Example includes a ball in its resting state. The formula for potential energy is "mgh" where "m" is mass, "g" is acceleration due to gravity and "h" is height
Considering the law of conservation of energy which states that energy can neither be created nor destroyed but can be transformed from one form to another. Looking at the example provided earlier for potential energy, a ball in its resting position (having a potential energy) when kicked will have a kinetic energy (which can be calculated with the formula provided earlier), hence
Total energy = potential energy (P.E) + kinetic energy (K.E)
This formula and the explanation above can be used to answer the completed question.
NOTE: There is no standard relationship between P.E and K.E. They could be directly or indirectly proportional depending on the circumstance.
Answer: Limiting reactant = 3
Theoretical Yield= 1
Excess reactant=2
Explanation: The theoretical yield is the maximum possible mass of a product that can be made in a chemical reaction. It can be calculated from: the balanced chemical equation. the mass and relative formula mass of the limiting reactant , and. the relative formula mass of the product.
An excess reactant is a reactant present in an amount in excess of that required to combine with all of the limiting reactant. It follows that an excess reactant is one remaining in the reaction mixture once all the limiting reactant is consumed.
The limiting reagent is the reactant that is completely used up in a reaction, and thus determines when the reaction stops. From the reaction stoichiometry, the exact amount of reactant needed to react with another element can be calculated