Answer:
a constant is a data item whose value cannot change during the program execution just as its name implies that the value is constant a variable is a data item whose value can change during the program's execution . Thus as its name implies the the value can vary
Answer:
A hope this helps
Step-by-step explanation:
Answer:
-139
Step-by-step explanation:
Evaluate 1/4 (4 x^3 - 2 y - 2 z^3) y^2 - 16 x^2 where x = 2, y = -5 and z = 3:
(4 x^3 - 2 y - 2 z^3)/4 y^2 - 16 x^2 = (4×2^3 - -5×2 - 2×3^3)/4×(-5)^2 - 16×2^2
(4×2^3 - 2 (-5) - 2×3^3)/4×(-5)^2 = ((4×2^3 - 2 (-5) - 2×3^3) (-5)^2)/4:
((4×2^3 - 2 (-5) - 2×3^3) (-5)^2)/4 - 16×2^2
(-5)^2 = 25:
((4×2^3 - 2 (-5) - 2×3^3) 25)/4 - 16×2^2
2^3 = 2×2^2:
((4×2×2^2 - 2 (-5) - 2×3^3) 25)/4 - 16×2^2
2^2 = 4:
((4×2×4 - 2 (-5) - 2×3^3) 25)/4 - 16×2^2
2×4 = 8:
((4×8 - 2 (-5) - 2×3^3) 25)/4 - 16×2^2
3^3 = 3×3^2:
((4×8 - 2 (-5) - 23×3^2) 25)/4 - 16×2^2
3^2 = 9:
((4×8 - 2 (-5) - 2×3×9) 25)/4 - 16×2^2
3×9 = 27:
((4×8 - 2 (-5) - 227) 25)/4 - 16×2^2
4×8 = 32:
((32 - 2 (-5) - 2×27) 25)/4 - 16×2^2
-2 (-5) = 10:
((32 + 10 - 2×27) 25)/4 - 16×2^2
-2×27 = -54:
((32 + 10 + -54) 25)/4 - 16×2^2
| 3 | 2
+ | 1 | 0
| 4 | 2:
(42 - 54 25)/4 - 16×2^2
42 - 54 = -(54 - 42):
(-(54 - 42) 25)/4 - 16×2^2
| 5 | 4
- | 4 | 2
| 1 | 2:
(-12×25)/4 - 16×2^2
(-12)/4 = (4 (-3))/4 = -3:
-3×25 - 16×2^2
2^2 = 4:
-3×25 - 164
-3×25 = -75:
-75 - 16×4
-16×4 = -64:
-64 - 75
-75 - 64 = -(75 + 64):
-(75 + 64)
| 7 | 5
+ | 6 | 4
1 | 3 | 9:
Answer: -139
Answer:
5x+14y+9z
Step-by-step explanation:
combine 8x and -3x to get 5x
combine 5y and 9y to get 13y
combine -4z and 13z to get 9z
Answer:
GCF: y³z³
Step-by-step explanation:
The greatest common factor is the a term that you can take out of all the terms given to you. This term, when multiplied to each of the individual numbers in the set, will return you to the original amount.
In this case, note that they all share the variables y and z, and that each of them have <em>at least</em> 3 y's and 3 z's. For you to factor, you will divide these from all the terms.

y³z³(x³y²z² , z² , x)
~