37.5% of 32 is 12
if you move the decimal point in the percentage 2 places to the left you will get a number you can multiply with
so 0.375 x 32 = 12
Answer:
Step-by-step explanation:
The binomial is a factor of the polynomial.
Please: Use "^" to denote exponentiation: <span>2x^2 + 8x - 12 = 0
Reduce this by div. every term by 2: </span><span>x^2 + 4x - 6 = 0
Here a=1, b=4 and c = -6. Square half of b, obtaining (4/2)^2 = 4, and add, and then subtract, this 4 to x^2 + 4x - 6:
</span> x^2 + 4x +4 - 4 - 6 = 0. Rewrite the square as (x+2)^2, obtaining new equation
(x+2)^2 = 10. Take the sqrt of both sides: x+2 = plus or minus sqrt(10).
Finally, solve for x: x = -2 plus or minus sqrt(10).
Answer:
x = -4
Step-by-step explanation:
-24 = 6x
________
Switch sides:
6x = -24
________
Divide both sides by 6:
6x/6 = -24/6
________
Simplify:
X = -4
Answer:
c) .22
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so 
Now, find the margin of error M as such

In which
is the standard deviation of the population and n is the size of the sample.
In this question:

Then


